You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_unfold_op.py

103 lines
3.6 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import math
import numpy as np
import unittest
from op_test import OpTest
class TestUnfoldOp(OpTest):
"""
This is for test on unfold Op
"""
def init_data(self):
self.batch_size = 3
self.input_channels = 3
self.input_height = 20
self.input_width = 20
self.kernel_sizes = [3, 3]
self.strides = [1, 1]
self.paddings = [1, 1, 1, 1]
self.dilations = [1, 1]
input_shape = [
self.batch_size, self.input_channels, self.input_height,
self.input_width
]
self.x = np.random.rand(*input_shape).astype(np.float32)
def calc_unfold(self):
output_shape = [0] * 3
output_shape[0] = self.batch_size
output_shape[1] = self.input_channels * self.kernel_sizes[
0] * self.kernel_sizes[1]
dkernel_h = self.dilations[0] * (self.kernel_sizes[0] - 1) + 1
dkernel_w = self.dilations[1] * (self.kernel_sizes[1] - 1) + 1
out_height = int((self.input_height + self.paddings[0] +
self.paddings[2] - dkernel_h) / self.strides[0]) + 1
out_width = int((self.input_width + self.paddings[1] + self.paddings[3]
- dkernel_w) / self.strides[1]) + 1
output_shape[2] = out_height * out_width
output = np.zeros(output_shape).astype(np.float32)
############ calculate output ##############
for i in range(output_shape[0]):
for j in range(output_shape[1]):
for k in range(output_shape[2]):
h_out = int(k / out_width)
w_out = k % out_width
w_offset = j % self.kernel_sizes[1]
h_offset = int(j /
self.kernel_sizes[1]) % self.kernel_sizes[0]
c_in = int(j /
(self.kernel_sizes[0] * self.kernel_sizes[1]))
h_in = h_offset * self.dilations[0] + h_out * self.strides[
0] - self.paddings[0]
w_in = w_offset * self.dilations[1] + w_out * self.strides[
1] - self.paddings[1]
if (h_in>=0 and h_in<self.input_height) and \
(w_in>=0 and w_in<self.input_width):
output[i, j, k] = self.x[i, c_in, h_in, w_in]
self.outputs = output
def set_data(self):
self.init_data()
self.calc_unfold()
self.inputs = {'X': self.x}
self.attrs = {
'kernel_sizes': self.kernel_sizes,
'paddings': self.paddings,
'dilations': self.dilations,
'strides': self.strides
}
self.outputs = {'Y': self.outputs}
def setUp(self):
self.op_type = 'unfold'
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
if __name__ == '__main__':
unittest.main()