You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
6.4 KiB
182 lines
6.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import contextlib
|
|
|
|
import unittest
|
|
from functools import partial
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler
|
|
|
|
|
|
def get_places():
|
|
places = []
|
|
if core.is_compiled_with_cuda():
|
|
places.append(core.CUDAPlace(0))
|
|
return places
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def prog_scope_guard(main_prog, startup_prog):
|
|
scope = fluid.core.Scope()
|
|
with fluid.unique_name.guard():
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
yield
|
|
|
|
|
|
def bow_net(data,
|
|
label,
|
|
dict_dim,
|
|
is_sparse=False,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2):
|
|
"""
|
|
BOW net
|
|
This model is from https://github.com/PaddlePaddle/models:
|
|
fluid/PaddleNLP/text_classification/nets.py
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
|
|
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
|
bow_tanh = fluid.layers.tanh(bow)
|
|
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
|
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
|
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
return avg_cost
|
|
|
|
|
|
class TestWeightDecay(unittest.TestCase):
|
|
def setUp(self):
|
|
self.word_dict = paddle.dataset.imdb.word_dict()
|
|
reader = paddle.batch(
|
|
paddle.dataset.imdb.train(self.word_dict), batch_size=4)()
|
|
self.train_data = [next(reader) for _ in range(5)]
|
|
self.learning_rate = .5
|
|
|
|
def run_executor(self, place, feed_list, loss):
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
|
exe.run(fluid.default_startup_program())
|
|
main_prog = fluid.default_main_program()
|
|
loss_set = []
|
|
for data in self.train_data:
|
|
out = exe.run(main_prog,
|
|
feed=feeder.feed(data),
|
|
fetch_list=[loss.name])
|
|
|
|
print("loss %s" % (np.average(out)))
|
|
loss_set.append(np.average(out))
|
|
|
|
return loss_set
|
|
|
|
def run_parallel_exe(self,
|
|
place,
|
|
feed_list,
|
|
loss,
|
|
use_reduce=False,
|
|
use_fast_executor=False,
|
|
use_ir_memory_optimize=False):
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
exec_strategy = fluid.ExecutionStrategy()
|
|
if use_fast_executor:
|
|
exec_strategy.use_experimental_executor = True
|
|
|
|
build_strategy = fluid.BuildStrategy()
|
|
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \
|
|
if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
|
|
build_strategy.memory_optimize = use_ir_memory_optimize
|
|
|
|
train_cp = compiler.CompiledProgram(fluid.default_main_program(
|
|
)).with_data_parallel(
|
|
loss_name=loss.name,
|
|
exec_strategy=exec_strategy,
|
|
build_strategy=build_strategy)
|
|
|
|
loss_set = []
|
|
for data in self.train_data:
|
|
out = exe.run(train_cp,
|
|
feed=feeder.feed(data),
|
|
fetch_list=[loss.name])
|
|
loss_set.append(np.average(out))
|
|
|
|
return loss_set
|
|
|
|
def check_weight_decay(self,
|
|
place,
|
|
model,
|
|
use_parallel_exe=False,
|
|
use_reduce=False):
|
|
main_prog = fluid.framework.Program()
|
|
startup_prog = fluid.framework.Program()
|
|
startup_prog.random_seed = 1
|
|
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
|
|
data = fluid.layers.data(
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
avg_cost = model(data, label, len(self.word_dict))
|
|
|
|
param_list = [(var, var * self.learning_rate)
|
|
for var in main_prog.block(0).all_parameters()]
|
|
|
|
optimizer = fluid.optimizer.Adagrad(
|
|
learning_rate=self.learning_rate)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
for params in param_list:
|
|
updated_p = fluid.layers.elementwise_sub(
|
|
x=params[0], y=params[1])
|
|
fluid.layers.assign(input=updated_p, output=params[0])
|
|
|
|
if use_parallel_exe:
|
|
loss = self.run_parallel_exe(
|
|
place, [data, label], loss=avg_cost, use_reduce=use_reduce)
|
|
else:
|
|
loss = self.run_executor(place, [data, label], loss=avg_cost)
|
|
|
|
return loss
|
|
|
|
def test_weight_decay(self):
|
|
model = partial(bow_net, is_sparse=False)
|
|
for place in get_places():
|
|
loss = self.check_weight_decay(place, model, use_parallel_exe=False)
|
|
|
|
# TODO(zcd): should test use_reduce=True
|
|
loss2 = self.check_weight_decay(
|
|
place, model, use_parallel_exe=True, use_reduce=False)
|
|
|
|
for i in range(len(loss)):
|
|
self.assertTrue(
|
|
np.isclose(
|
|
a=loss[i], b=loss2[i], rtol=5e-5),
|
|
"Expect " + str(loss[i]) + "\n" + "But Got" + str(loss2[i])
|
|
+ " in class " + self.__class__.__name__)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|