You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.9 KiB
158 lines
4.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import shutil
|
|
import unittest
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
|
|
from test_dist_base import TestDistBase, RUN_STEP
|
|
|
|
|
|
class TestDistSaveLoadDense2x2(TestDistBase):
|
|
def _setup_config(self):
|
|
self._sync_mode = True
|
|
self._enforce_place = "CPU"
|
|
|
|
def check_with_place(self,
|
|
model_file,
|
|
delta=1e-3,
|
|
check_error_log=False,
|
|
need_envs={}):
|
|
required_envs = {
|
|
"PATH": os.getenv("PATH", ""),
|
|
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
|
|
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
|
|
"http_proxy": ""
|
|
}
|
|
|
|
required_envs.update(need_envs)
|
|
|
|
if check_error_log:
|
|
required_envs["GLOG_v"] = "3"
|
|
required_envs["GLOG_logtostderr"] = "1"
|
|
|
|
model_dir = tempfile.mkdtemp()
|
|
|
|
local_env = {}
|
|
local_env["SAVE"] = "1"
|
|
local_env["MODEL_DIR"] = model_dir
|
|
local_env.update(required_envs)
|
|
|
|
cluster_env = {}
|
|
cluster_env["LOAD"] = "1"
|
|
cluster_env["MODEL_DIR"] = model_dir
|
|
cluster_env.update(required_envs)
|
|
|
|
local_var = self._run_local(model_file, local_env, check_error_log)
|
|
tr0_var, tr1_var = self._run_cluster(model_file, cluster_env,
|
|
check_error_log)
|
|
|
|
shutil.rmtree(model_dir)
|
|
|
|
local_np = np.array(local_var)
|
|
train0_np = np.array(tr0_var)
|
|
train1_np = np.array(tr1_var)
|
|
|
|
np.testing.assert_almost_equal(local_np, train0_np, decimal=2)
|
|
np.testing.assert_almost_equal(local_np, train1_np, decimal=2)
|
|
np.testing.assert_almost_equal(train0_np, train1_np, decimal=2)
|
|
|
|
def test_dist(self):
|
|
need_envs = {
|
|
"IS_DISTRIBUTED": '0',
|
|
"IS_SPARSE": '0',
|
|
'IS_SELF_CONTAINED_LR': '1',
|
|
'SAVE_MODE': 'LOCAL',
|
|
}
|
|
self.check_with_place(
|
|
"dist_save_load.py",
|
|
delta=0,
|
|
check_error_log=False,
|
|
need_envs=need_envs)
|
|
|
|
|
|
class TestDistSaveLoadWithPServerStateDense2x2(TestDistBase):
|
|
def _setup_config(self):
|
|
self._sync_mode = True
|
|
self._enforce_place = "CPU"
|
|
|
|
def check_with_place(self,
|
|
model_file,
|
|
delta=1e-3,
|
|
check_error_log=False,
|
|
need_envs={}):
|
|
required_envs = {
|
|
"PATH": os.getenv("PATH", ""),
|
|
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
|
|
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
|
|
"http_proxy": ""
|
|
}
|
|
|
|
required_envs.update(need_envs)
|
|
|
|
if check_error_log:
|
|
required_envs["GLOG_v"] = "3"
|
|
required_envs["GLOG_logtostderr"] = "1"
|
|
|
|
model_dir = tempfile.mkdtemp()
|
|
|
|
save_env = {}
|
|
save_env["SAVE_MODE"] = "DIST"
|
|
save_env["SAVE"] = "1"
|
|
save_env["MODEL_DIR"] = model_dir
|
|
save_env.update(required_envs)
|
|
|
|
tr0_var_1, tr1_var_1 = self._run_cluster(model_file, save_env,
|
|
check_error_log)
|
|
|
|
load_env = {}
|
|
load_env["LOAD"] = "1"
|
|
load_env["MODEL_DIR"] = model_dir
|
|
load_env.update(required_envs)
|
|
tr0_var_2, tr1_var_2 = self._run_cluster(model_file, load_env,
|
|
check_error_log)
|
|
|
|
shutil.rmtree(model_dir)
|
|
|
|
train0_1_np = np.array(tr0_var_1)
|
|
train1_1_np = np.array(tr1_var_1)
|
|
train0_2_np = np.array(tr0_var_2)
|
|
train1_2_np = np.array(tr1_var_2)
|
|
|
|
np.testing.assert_almost_equal(train0_1_np, train0_2_np, decimal=2)
|
|
np.testing.assert_almost_equal(train1_1_np, train1_2_np, decimal=2)
|
|
|
|
def test_dist(self):
|
|
need_envs = {
|
|
"IS_DISTRIBUTED": '0',
|
|
"IS_SPARSE": '0',
|
|
'IS_SELF_CONTAINED_LR': '1',
|
|
'SAVE_MODE': 'DIST',
|
|
'OPTIMIZER': 'ADAM',
|
|
'SKIP_STEPS': str(np.random.randint(2, 6))
|
|
}
|
|
self.check_with_place(
|
|
"dist_save_load.py",
|
|
delta=0,
|
|
check_error_log=False,
|
|
need_envs=need_envs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|