You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_recurrent_u...

93 lines
3.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six
class RecurrentTest(fluid.Layer):
def __init__(self, name_scope):
super(RecurrentTest, self).__init__(name_scope)
def forward(self, in1, in2):
out = fluid.layers.mul(in1, in2)
sum_out = fluid.layers.reduce_sum(out)
return sum_out, out
class TestRecurrentFeed(unittest.TestCase):
def test_recurrent_feed(self):
seed = 90
original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
original_in1 = to_variable(original_np1)
original_in2 = to_variable(original_np2)
rt = RecurrentTest("RecurrentTest")
for i in range(3):
sum_out, out = rt(original_in1, original_in2)
original_in1 = out
sum_out_value = sum_out.numpy()
sum_out.backward()
dyout = out.gradient()
rt.clear_gradients()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
in1 = fluid.layers.data(
name="inp1", shape=[2, 2], append_batch_size=False)
in2 = fluid.layers.data(
name="inp2", shape=[2, 2], append_batch_size=False)
rt1 = RecurrentTest("RecurrentTest")
static_sum_out, static_out = rt1(in1, in2)
fluid.backward.append_backward(static_sum_out)
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_dout = fluid.default_main_program().block(
0)._find_var_recursive(static_out.name + "@GRAD")
fetch_list = [static_sum_out, static_out, static_dout]
for i in range(3):
out = exe.run(
fluid.default_main_program(),
feed={"inp1": original_np1,
"inp2": original_np2},
fetch_list=fetch_list)
static_out_value = out[1]
static_sum_out = out[0]
static_dout = out[2]
original_np1 = static_out_value
self.assertTrue(np.array_equal(static_sum_out, sum_out_value))
self.assertTrue(np.array_equal(static_dout, dyout))
if __name__ == '__main__':
unittest.main()