You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_rmsprop_op.py

227 lines
7.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
def create_selected_rows_and_tensor(scope, place, height, row_num,
embedding_size):
sr = scope.var("@selected_rows@").get_selected_rows()
tensor = scope.var("grad").get_tensor()
rows = np.random.random_integers(
low=0, high=height - 1, size=[row_num, ]).astype('int64')
sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')
sr.set_height(height)
sr.set_rows(rows)
sr.get_tensor().set(sr_val, place)
tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
for i in range(row_num):
row = rows[i]
tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]
tensor.set(tensor_val, place)
return tensor_val, sr_val
class TestBase(unittest.TestCase):
def setup(self,
place,
is_sparse,
centered,
size,
row_num=None,
epsilon=1e-6):
np.random.seed(5) # fix seed
self.scope = fluid.global_scope()
self.place = place
self.param_name = "param"
self.param = np.random.random(size).astype("float32")
self.mean_square_name = "mean_square"
self.mean_square = np.random.uniform(
low=1, high=2, size=size).astype("float32")
self.mean_grad_name = "mean_grad"
self.mean_grad = np.random.random(size).astype("float32")
self.lr_name = "lr"
self.learning_rate = np.array([0.01]).astype("float32")
self.grad_name = "grad"
self.is_sparse = is_sparse
if self.is_sparse:
self.grad_sr_name = "@selected_rows@"
self.grad, self.grad_sr = create_selected_rows_and_tensor(
self.scope, place, size[0], row_num, size[1])
else:
self.grad = np.random.random(size).astype("float32")
grad_tensor = self.scope.var(self.grad_name).get_tensor()
grad_tensor.set(self.grad, place)
self.moment_name = "moment"
self.moment = np.random.uniform(
low=0, high=1, size=size).astype("float32")
self.epsilon = epsilon
self.decay = 0.9
self.momentum = 0.1
self.centered = centered
self.ms_out = self.decay * self.mean_square + (1 - self.decay
) * self.grad * self.grad
if centered:
self.mg_out = self.decay * self.mean_grad + (1 - self.decay
) * self.grad
self.moment_out = self.momentum * self.moment + \
self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
else:
self.moment_out = self.momentum * self.moment + \
self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)
self.param_out = self.param - self.moment_out
# create and initialize Param Variable
self.param_tensor = self.scope.var(self.param_name).get_tensor()
self.param_tensor.set(self.param, place)
self.mean_square_tensor = self.scope.var(
self.mean_square_name).get_tensor()
self.mean_square_tensor.set(self.mean_square, place)
lr = self.scope.var(self.lr_name).get_tensor()
lr.set(self.learning_rate, place)
self.moment_tensor = self.scope.var(self.moment_name).get_tensor()
self.moment_tensor.set(self.moment, place)
if self.centered:
self.mean_grad_tensor = self.scope.var(
self.mean_grad_name).get_tensor()
self.mean_grad_tensor.set(self.mean_grad, place)
def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol),
"Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
+ str(expect_t) + "\n" + "But Got" + str(actual_t))
class TestRmspropOp(TestBase):
def check_with_place(self,
place,
is_sparse,
centered,
size,
row_num=None,
epsilon=1e-6):
self.setup(place, is_sparse, centered, size, row_num, epsilon)
self.run_and_check()
def run_and_check(self):
grad_name = self.grad_sr_name if self.is_sparse else self.grad_name
kwargs = {
'Param': self.param_name,
'Grad': grad_name,
'MeanSquare': self.mean_square_name,
'Moment': self.moment_name,
'LearningRate': self.lr_name,
'ParamOut': self.param_name,
'MeanSquareOut': self.mean_square_name,
'MomentOut': self.moment_name,
'epsilon': self.epsilon,
'decay': self.decay,
'momentum': self.momentum,
'centered': self.centered
}
if self.centered:
kwargs['MeanGrad'] = self.mean_grad_name
kwargs['MeanGradOut'] = self.mean_grad_name
rmsprop_op = Operator('rmsprop', **kwargs)
atol = 1e-6
rmsprop_op.run(self.scope, self.place)
self.check(
np.array(self.mean_square_tensor),
self.ms_out,
self.place,
self.mean_square_name,
atol=atol)
self.check(
np.array(self.moment_tensor),
self.moment_out,
self.place,
self.moment_name,
atol=atol)
self.check(
np.array(self.param_tensor),
self.param_out,
self.place,
self.param_name,
atol=atol)
if self.centered:
self.check(
np.array(self.mean_grad_tensor), self.mg_out, self.place,
self.mean_grad_name)
def test_rmsprop(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
size = (128, 320)
for place in places:
for centered in [False, True]:
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place, is_sparse=False, centered=centered, size=size)
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place,
is_sparse=True,
centered=centered,
row_num=512,
size=size)
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place,
is_sparse=True,
centered=centered,
row_num=60,
size=size)
if __name__ == "__main__":
unittest.main()