You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
4.6 KiB
157 lines
4.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.framework import convert_np_dtype_to_dtype_
|
|
import paddle.fluid.core as core
|
|
import numpy as np
|
|
import copy
|
|
import unittest
|
|
|
|
|
|
class SequenceMaskTestBase(OpTest):
|
|
def initDefaultParameters(self):
|
|
self.op_type = 'sequence_mask'
|
|
self.maxlen = 10
|
|
self.mask_dtype = 'int64'
|
|
self.x = [[0, 3, 4], [5, 7, 9]]
|
|
|
|
def initParameters(self):
|
|
pass
|
|
|
|
def setUp(self):
|
|
self.initDefaultParameters()
|
|
self.initParameters()
|
|
if not isinstance(self.x, np.ndarray):
|
|
self.x = np.array(self.x)
|
|
|
|
self.inputs = {'X': self.x}
|
|
self.outputs = {'Y': self.calc_ground_truth_mask()}
|
|
self.attrs = {
|
|
'maxlen': self.maxlen,
|
|
'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)
|
|
}
|
|
|
|
def calc_ground_truth_mask(self):
|
|
maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
|
|
shape = self.x.shape + (maxlen, )
|
|
index_broadcast = np.broadcast_to(
|
|
np.reshape(
|
|
range(maxlen), newshape=[1] * self.x.ndim + [-1]),
|
|
shape=shape)
|
|
x_broadcast = np.broadcast_to(
|
|
np.reshape(
|
|
self.x, newshape=self.x.shape + (-1, )), shape=shape)
|
|
return (index_broadcast < x_broadcast).astype(self.mask_dtype)
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class SequenceMaskTest1(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'bool'
|
|
|
|
|
|
class SequenceMaskTest2(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'uint8'
|
|
|
|
|
|
class SequenceMaskTest3(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'int32'
|
|
|
|
|
|
class SequenceMaskTest4(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'float32'
|
|
|
|
|
|
class SequenceMaskTest5(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'float64'
|
|
|
|
|
|
class SequenceMaskTest6(SequenceMaskTestBase):
|
|
def initParameters(self):
|
|
self.maxlen = -1
|
|
|
|
|
|
class SequenceMaskTestBase_tensor_attr(OpTest):
|
|
def initDefaultParameters(self):
|
|
self.op_type = 'sequence_mask'
|
|
self.maxlen = 10
|
|
self.maxlen_tensor = np.ones((1), 'int32') * 10
|
|
self.mask_dtype = 'int64'
|
|
self.x = [[0, 3, 4], [5, 7, 9]]
|
|
|
|
def initParameters(self):
|
|
pass
|
|
|
|
def setUp(self):
|
|
self.initDefaultParameters()
|
|
self.initParameters()
|
|
if not isinstance(self.x, np.ndarray):
|
|
self.x = np.array(self.x)
|
|
|
|
self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor}
|
|
self.outputs = {'Y': self.calc_ground_truth_mask()}
|
|
self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)}
|
|
|
|
def calc_ground_truth_mask(self):
|
|
maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
|
|
shape = self.x.shape + (maxlen, )
|
|
index_broadcast = np.broadcast_to(
|
|
np.reshape(
|
|
range(maxlen), newshape=[1] * self.x.ndim + [-1]),
|
|
shape=shape)
|
|
x_broadcast = np.broadcast_to(
|
|
np.reshape(
|
|
self.x, newshape=self.x.shape + (-1, )), shape=shape)
|
|
return (index_broadcast < x_broadcast).astype(self.mask_dtype)
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'bool'
|
|
|
|
|
|
class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'uint8'
|
|
|
|
|
|
class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'int32'
|
|
|
|
|
|
class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'float32'
|
|
|
|
|
|
class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr):
|
|
def initParameters(self):
|
|
self.mask_dtype = 'float64'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|