You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
4.2 KiB
118 lines
4.2 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
from paddle.fluid import core
|
|
|
|
|
|
def sigmoid(x):
|
|
return 1.0 / (1.0 + np.exp(-1.0 * x))
|
|
|
|
|
|
def YoloBox(x, img_size, attrs):
|
|
n, c, h, w = x.shape
|
|
anchors = attrs['anchors']
|
|
an_num = int(len(anchors) // 2)
|
|
class_num = attrs['class_num']
|
|
conf_thresh = attrs['conf_thresh']
|
|
downsample = attrs['downsample']
|
|
input_size = downsample * h
|
|
|
|
x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
|
|
|
|
pred_box = x[:, :, :, :, :4].copy()
|
|
grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
|
|
grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
|
|
pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
|
|
pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h
|
|
|
|
anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
|
|
anchors_s = np.array(
|
|
[(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
|
|
anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1))
|
|
anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1))
|
|
pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
|
|
pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h
|
|
|
|
pred_conf = sigmoid(x[:, :, :, :, 4:5])
|
|
pred_conf[pred_conf < conf_thresh] = 0.
|
|
pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf
|
|
pred_box = pred_box * (pred_conf > 0.).astype('float32')
|
|
|
|
pred_box = pred_box.reshape((n, -1, 4))
|
|
pred_box[:, :, :2], pred_box[:, :, 2:4] = \
|
|
pred_box[:, :, :2] - pred_box[:, :, 2:4] / 2., \
|
|
pred_box[:, :, :2] + pred_box[:, :, 2:4] / 2.0
|
|
pred_box[:, :, 0] = pred_box[:, :, 0] * img_size[:, 1][:, np.newaxis]
|
|
pred_box[:, :, 1] = pred_box[:, :, 1] * img_size[:, 0][:, np.newaxis]
|
|
pred_box[:, :, 2] = pred_box[:, :, 2] * img_size[:, 1][:, np.newaxis]
|
|
pred_box[:, :, 3] = pred_box[:, :, 3] * img_size[:, 0][:, np.newaxis]
|
|
|
|
for i in range(len(pred_box)):
|
|
pred_box[i, :, 0] = np.clip(pred_box[i, :, 0], 0, np.inf)
|
|
pred_box[i, :, 1] = np.clip(pred_box[i, :, 1], 0, np.inf)
|
|
pred_box[i, :, 2] = np.clip(pred_box[i, :, 2], -np.inf,
|
|
img_size[i, 1] - 1)
|
|
pred_box[i, :, 3] = np.clip(pred_box[i, :, 3], -np.inf,
|
|
img_size[i, 0] - 1)
|
|
|
|
return pred_box, pred_score.reshape((n, -1, class_num))
|
|
|
|
|
|
class TestYoloBoxOp(OpTest):
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.op_type = 'yolo_box'
|
|
x = np.random.random(self.x_shape).astype('float32')
|
|
img_size = np.random.randint(10, 20, self.imgsize_shape).astype('int32')
|
|
|
|
self.attrs = {
|
|
"anchors": self.anchors,
|
|
"class_num": self.class_num,
|
|
"conf_thresh": self.conf_thresh,
|
|
"downsample": self.downsample,
|
|
}
|
|
|
|
self.inputs = {
|
|
'X': x,
|
|
'ImgSize': img_size,
|
|
}
|
|
boxes, scores = YoloBox(x, img_size, self.attrs)
|
|
self.outputs = {
|
|
"Boxes": boxes,
|
|
"Scores": scores,
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def initTestCase(self):
|
|
self.anchors = [10, 13, 16, 30, 33, 23]
|
|
an_num = int(len(self.anchors) // 2)
|
|
self.batch_size = 32
|
|
self.class_num = 2
|
|
self.conf_thresh = 0.5
|
|
self.downsample = 32
|
|
self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
|
|
self.imgsize_shape = (self.batch_size, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|