You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							72 lines
						
					
					
						
							2.7 KiB
						
					
					
				
			
		
		
	
	
							72 lines
						
					
					
						
							2.7 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename DeviceContext, typename T, typename AttrType = T>
 | 
						|
class HingeLossKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* pred = context.Input<framework::Tensor>("Logits");
 | 
						|
    auto* label = context.Input<framework::Tensor>("Labels");
 | 
						|
    auto* loss = context.Output<framework::Tensor>("Loss");
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    auto x = framework::EigenVector<T>::Flatten(*pred);
 | 
						|
    auto y = framework::EigenVector<T>::Flatten(*label);
 | 
						|
    loss->mutable_data<T>(context.GetPlace());
 | 
						|
    auto l = framework::EigenVector<T>::Flatten(*loss);
 | 
						|
    l.device(place) =
 | 
						|
        (static_cast<T>(1) - x * (static_cast<T>(2) * y - static_cast<T>(1)))
 | 
						|
            .cwiseMax(static_cast<T>(0));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T, typename AttrType = T>
 | 
						|
class HingeLossGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* pred = context.Input<framework::Tensor>("Logits");
 | 
						|
    auto* label = context.Input<framework::Tensor>("Labels");
 | 
						|
    auto* dloss =
 | 
						|
        context.Input<framework::Tensor>(framework::GradVarName("Loss"));
 | 
						|
    auto* dpred =
 | 
						|
        context.Output<framework::Tensor>(framework::GradVarName("Logits"));
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    auto x = framework::EigenVector<T>::Flatten(*pred);
 | 
						|
    auto y = framework::EigenVector<T>::Flatten(*label);
 | 
						|
    auto dl = framework::EigenVector<T>::Flatten(*dloss);
 | 
						|
 | 
						|
    if (dpred) {
 | 
						|
      dpred->mutable_data<T>(context.GetPlace());
 | 
						|
      auto dx = framework::EigenVector<T>::Flatten(*dpred);
 | 
						|
      auto alt_labels = static_cast<T>(2) * y - static_cast<T>(1);
 | 
						|
      dx.device(place) =
 | 
						|
          dl * ((x * alt_labels) < static_cast<T>(1)).template cast<T>() *
 | 
						|
          (-alt_labels);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |