You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							394 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
	
	
							394 lines
						
					
					
						
							17 KiB
						
					
					
				/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/unsqueeze_op.h"
 | 
						|
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class UnsqueezeOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
 | 
						|
                      platform::errors::InvalidArgument(
 | 
						|
                          "Input(X) of "
 | 
						|
                          "Unsqueeze operator should not be null."));
 | 
						|
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
 | 
						|
                      platform::errors::InvalidArgument(
 | 
						|
                          "Output(Out) of "
 | 
						|
                          "Unsqueeze operator should not be null."));
 | 
						|
 | 
						|
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
 | 
						|
    const auto &x_dims = ctx->GetInputDim("X");
 | 
						|
    // Validity Check: input tensor dims (<6).
 | 
						|
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
 | 
						|
                      platform::errors::InvalidArgument(
 | 
						|
                          "Invalid "
 | 
						|
                          "dimensions, the rank of Input(X) "
 | 
						|
                          "should be in the range of [1, 6] (Eigen limit)"));
 | 
						|
    if (!axes.empty()) {
 | 
						|
      auto out_dims = GetOutputShape(axes, x_dims);
 | 
						|
      ctx->SetOutputDim("Out", out_dims);
 | 
						|
      if (x_dims[0] == out_dims[0]) {
 | 
						|
        // Only pass LoD when the first dimension of output and Input(X)
 | 
						|
        // are the same.
 | 
						|
        ctx->ShareLoD("X", "Out");
 | 
						|
      }
 | 
						|
    } else if (ctx->HasInputs("AxesTensorList")) {
 | 
						|
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
 | 
						|
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
 | 
						|
      PADDLE_ENFORCE_LE(output_size, 6,
 | 
						|
                        platform::errors::InvalidArgument(
 | 
						|
                            "The output tensor's rank should be less than 6."));
 | 
						|
      std::vector<int> vec_out_dims(output_size, -1);
 | 
						|
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
 | 
						|
    } else if (ctx->HasInput("AxesTensor")) {
 | 
						|
      auto axes_dims = ctx->GetInputDim("AxesTensor");
 | 
						|
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
 | 
						|
                        platform::errors::InvalidArgument(
 | 
						|
                            "Input(AxesTensor)'s dimension of "
 | 
						|
                            "Op(unsqueeze) must be 1. "
 | 
						|
                            "But received AxesTensor's shape = [%s], "
 | 
						|
                            "AxesTensor's dimension = %d.",
 | 
						|
                            axes_dims, axes_dims.size()));
 | 
						|
      PADDLE_ENFORCE_GE(
 | 
						|
          axes_dims[0], 0,
 | 
						|
          platform::errors::InvalidArgument(
 | 
						|
              "Input(AxesTensor)'s shape must be known. But received "
 | 
						|
              "AxesTensor's shape = [%s]",
 | 
						|
              axes_dims));
 | 
						|
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
 | 
						|
      PADDLE_ENFORCE_LE(output_size, 6,
 | 
						|
                        platform::errors::InvalidArgument(
 | 
						|
                            "The output tensor's rank should be less than 6."));
 | 
						|
      std::vector<int> vec_out_dims(output_size, -1);
 | 
						|
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
 | 
						|
                                        const framework::DDim &in_dims) {
 | 
						|
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
 | 
						|
    int cur_output_size = in_dims.size();
 | 
						|
    std::vector<int64_t> output_shape(output_size, 0);
 | 
						|
 | 
						|
    // Validity Check: rank range.
 | 
						|
    PADDLE_ENFORCE_LE(output_size, 6,
 | 
						|
                      platform::errors::InvalidArgument(
 | 
						|
                          "The output tensor's rank should be less than 6."));
 | 
						|
 | 
						|
    for (int axis : unsqz_dims) {
 | 
						|
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
 | 
						|
      // Vaildity Check: the axis bound
 | 
						|
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
 | 
						|
                                    "The insert dimension value should "
 | 
						|
                                    "not be less than 0"));
 | 
						|
      PADDLE_ENFORCE_LE(cur, cur_output_size,
 | 
						|
                        platform::errors::InvalidArgument(
 | 
						|
                            "The insert dimension value shoud not be larger "
 | 
						|
                            "than the dimension size of input tensor"));
 | 
						|
      // Move old axis, and insert new axis
 | 
						|
      for (int i = cur_output_size; i >= cur; --i) {
 | 
						|
        if (output_shape[i] == 1) {
 | 
						|
          // Move axis
 | 
						|
          output_shape[i + 1] = 1;
 | 
						|
          output_shape[i] = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      output_shape[cur] = 1;
 | 
						|
      // Add the output size.
 | 
						|
      cur_output_size++;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make output shape
 | 
						|
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
 | 
						|
      if (output_shape[out_idx] == 0) {
 | 
						|
        output_shape[out_idx] = in_dims[in_idx++];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return framework::make_ddim(output_shape);
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
 | 
						|
                                   ctx.device_context());
 | 
						|
  }
 | 
						|
 | 
						|
  framework::OpKernelType GetKernelTypeForVar(
 | 
						|
      const std::string &var_name, const framework::Tensor &tensor,
 | 
						|
      const framework::OpKernelType &expected_kernel_type) const override {
 | 
						|
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
 | 
						|
      return expected_kernel_type;
 | 
						|
    }
 | 
						|
    return framework::OpKernelType(expected_kernel_type.data_type_,
 | 
						|
                                   tensor.place(), tensor.layout());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
 | 
						|
    AddInput("AxesTensor",
 | 
						|
             "(Tensor<int32>, optional). The dimensions to be inserted. "
 | 
						|
             "If it exists, it will replace Attr(axes).")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput(
 | 
						|
        "AxesTensorList",
 | 
						|
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
 | 
						|
        "If it exists, it will replace Attr(axes)."
 | 
						|
        "The shape of the element in vector must be [1].")
 | 
						|
        .AsDuplicable()
 | 
						|
        .AsDispensable();
 | 
						|
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
 | 
						|
    AddAttr<std::vector<int>>("axes",
 | 
						|
                              "(std::vector<int>). List of integers,"
 | 
						|
                              " indicating the dimensions to be inserted")
 | 
						|
        .SetDefault({})
 | 
						|
        .AddCustomChecker([](const std::vector<int> &axes) {
 | 
						|
          // Validity Check: axes dims (<6).
 | 
						|
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
 | 
						|
                            platform::errors::InvalidArgument(
 | 
						|
                                "Invalid "
 | 
						|
                                "dimensions, dynamic dimensions should be "
 | 
						|
                                "within [1, 6] dimensions (Eigen limit)."));
 | 
						|
          // Validity Check: the range of unsqueeze axis.
 | 
						|
          for (int axis : axes) {
 | 
						|
            PADDLE_ENFORCE_LT(axis, 6,
 | 
						|
                              platform::errors::InvalidArgument(
 | 
						|
                                  "Invalid "
 | 
						|
                                  "dimensions, input axis should be"
 | 
						|
                                  "within [1, 6] dimensions (Eigen limit)."));
 | 
						|
          }
 | 
						|
        });
 | 
						|
    AddComment(R"DOC(
 | 
						|
    Unsqueeze Operator.
 | 
						|
 | 
						|
    Insert single-dimensional entries to the shape of a tensor.
 | 
						|
    Takes one required argument axes, a list of dimensions that will be inserted.
 | 
						|
    Dimension indices in axes are as seen in the output tensor.
 | 
						|
 | 
						|
    For example:
 | 
						|
      Given a tensor such that tensor with shape [3, 4, 5],
 | 
						|
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
 | 
						|
    )DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class UnsqueezeGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | 
						|
    ctx->ShareLoD("X", framework::GradVarName("X"));
 | 
						|
  }
 | 
						|
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
 | 
						|
                                       ctx, framework::GradVarName("Out")),
 | 
						|
                                   ctx.device_context());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						|
 | 
						|
  void Apply(GradOpPtr<T> grad_op) const override {
 | 
						|
    grad_op->SetType("unsqueeze_grad");
 | 
						|
    grad_op->SetInput("X", this->Input("X"));
 | 
						|
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | 
						|
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | 
						|
    grad_op->SetAttrMap(this->Attrs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						|
 | 
						|
  void Apply(GradOpPtr<T> grad_op) const override {
 | 
						|
    grad_op->SetType("unsqueeze");
 | 
						|
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
 | 
						|
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
 | 
						|
    grad_op->SetAttrMap(this->Attrs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
 | 
						|
// unsqueeze, the XShape is used to carry the shape and lod of X which
 | 
						|
// will be used in unsqueeze_grad, in this way, the framework can reuse
 | 
						|
// the memory of X immediately the unsqueeze2_op is finished.
 | 
						|
// Considering compatibility issues, we could not fix unsqueeze2_op
 | 
						|
class Unsqueeze2Op : public UnsqueezeOp {
 | 
						|
 public:
 | 
						|
  using UnsqueezeOp::UnsqueezeOp;
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    UnsqueezeOp::InferShape(ctx);
 | 
						|
    const auto &x_dims = ctx->GetInputDim("X");
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(
 | 
						|
        ctx->HasOutput("XShape"), true,
 | 
						|
        platform::errors::InvalidArgument("Output(XShape) of Unsqueeze "
 | 
						|
                                          "operator should not be null."));
 | 
						|
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
 | 
						|
    xshape_dims[0] = 0;
 | 
						|
    for (int i = 0; i < x_dims.size(); ++i) {
 | 
						|
      xshape_dims[i + 1] = x_dims[i];
 | 
						|
    }
 | 
						|
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
 | 
						|
    ctx->ShareLoD("X", /*->*/ "XShape");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    UnsqueezeOpMaker::Make();
 | 
						|
    AddOutput("XShape",
 | 
						|
              "XShape is just used to store the shape and lod of X, which will "
 | 
						|
              "be used in UnsqueezeGradOp.")
 | 
						|
        .AsIntermediate();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						|
 | 
						|
  void Apply(GradOpPtr<T> grad_op) const override {
 | 
						|
    grad_op->SetType("unsqueeze2_grad");
 | 
						|
    grad_op->SetInput("XShape", this->Output("XShape"));
 | 
						|
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | 
						|
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | 
						|
    grad_op->SetAttrMap(this->Attrs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
  void InferShape(framework::InferShapeContext *context) const override {
 | 
						|
    PADDLE_ENFORCE_EQ(
 | 
						|
        context->HasInput("XShape"), true,
 | 
						|
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
 | 
						|
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
 | 
						|
                      platform::errors::InvalidArgument(
 | 
						|
                          "Input(Out@GRAD) shouldn't be null."));
 | 
						|
    auto xshape_dims = context->GetInputDim("XShape");
 | 
						|
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
 | 
						|
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
 | 
						|
    context->ShareLoD("XShape", framework::GradVarName("X"));
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext &ctx) const override {
 | 
						|
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
 | 
						|
                                       ctx, framework::GradVarName("Out")),
 | 
						|
                                   ctx.device_context());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						|
 | 
						|
  void Apply(GradOpPtr<T> grad_op) const override {
 | 
						|
    grad_op->SetType("unsqueeze2");
 | 
						|
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
 | 
						|
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
 | 
						|
    grad_op->SetOutput("XShape", this->Input("XShape"));
 | 
						|
    grad_op->SetAttrMap(this->Attrs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
 | 
						|
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
 | 
						|
                           {framework::GradVarName("Out"),
 | 
						|
                            framework::GradVarName("X")});
 | 
						|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
 | 
						|
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
 | 
						|
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
 | 
						|
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
 | 
						|
                  ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
 | 
						|
                  ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
 | 
						|
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
 | 
						|
 | 
						|
REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
 | 
						|
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
 | 
						|
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
 | 
						|
                  ops::UnsqueezeInplaceInferer);
 | 
						|
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
 | 
						|
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
 | 
						|
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
 | 
						|
                  ops::UnsqueezeGradInplaceInferer);
 | 
						|
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    unsqueeze_grad,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
 | 
						|
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
 | 
						|
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    unsqueeze2_grad,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
 | 
						|
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);
 |