You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.1 KiB
136 lines
5.1 KiB
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/pixel_shuffle_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PixelShuffleOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of PixelShuffleOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of PixelShuffleOp should not be null.");
|
|
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");
|
|
auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");
|
|
|
|
PADDLE_ENFORCE(input_dims[1] % (upscale_factor * upscale_factor) == 0,
|
|
"Upscale_factor should devide the number of channel");
|
|
|
|
auto output_dims = input_dims;
|
|
output_dims[0] = input_dims[0];
|
|
output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor);
|
|
output_dims[2] = input_dims[2] * upscale_factor;
|
|
output_dims[3] = input_dims[3] * upscale_factor;
|
|
ctx->SetOutputDim("Out", output_dims);
|
|
}
|
|
};
|
|
|
|
class PixelShuffleOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor, default Tensor<float>), "
|
|
"the input feature data of PixelShuffleOp, the layout is [N C H W].");
|
|
AddOutput(
|
|
"Out",
|
|
"(Tensor, default Tensor<float>), the output of "
|
|
"PixelShuffleOp. The layout is [N,C/factor^2,H*factor,W*factor].");
|
|
AddAttr<int>("upscale_factor",
|
|
"the factor to increase spatial resolution by.")
|
|
.SetDefault(1)
|
|
.AddCustomChecker([](const int& upscale_factor) {
|
|
PADDLE_ENFORCE_GE(upscale_factor, 1,
|
|
"upscale_factor should be larger than 0.");
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
Pixel Shuffle operator
|
|
This operator rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
|
|
to a tensor of shape :math:`(C, H \times r, W \times r)`.
|
|
|
|
This is useful for implementing efficient sub-pixel convolution
|
|
with a stride of :math:`1/r`.
|
|
|
|
Please refer to the paper:
|
|
`Real-Time Single Image and Video Super-Resolution Using an Efficient
|
|
Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_
|
|
by Shi et. al (2016) for more details.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class PixelShuffleGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto* op = new framework::OpDesc();
|
|
op->SetType("pixel_shuffle_grad");
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetAttrMap(Attrs());
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
return std::unique_ptr<framework::OpDesc>(op);
|
|
}
|
|
};
|
|
|
|
class PixelShuffleGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@Grad) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Output(X@Grad) should not be null");
|
|
|
|
auto do_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
PADDLE_ENFORCE(do_dims.size() == 4, "The layout of input is NCHW.");
|
|
|
|
auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");
|
|
|
|
auto dx_dims = do_dims;
|
|
dx_dims[0] = do_dims[0];
|
|
dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor);
|
|
dx_dims[2] = do_dims[2] / upscale_factor;
|
|
dx_dims[3] = do_dims[3] / upscale_factor;
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dx_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(pixel_shuffle, ops::PixelShuffleOp, ops::PixelShuffleOpMaker,
|
|
ops::PixelShuffleGradMaker);
|
|
|
|
REGISTER_OPERATOR(pixel_shuffle_grad, ops::PixelShuffleGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
pixel_shuffle,
|
|
ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
pixel_shuffle_grad,
|
|
ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|