You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_sign_op.py

87 lines
3.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestSignOp(OpTest):
def setUp(self):
self.op_type = "sign"
self.inputs = {
'X': np.random.uniform(-10, 10, (10, 10)).astype("float64")
}
self.outputs = {'Out': np.sign(self.inputs['X'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSignOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of sign_op must be Variable or numpy.ndarray.
input1 = 12
self.assertRaises(TypeError, fluid.layers.sign, input1)
# The input dtype of sign_op must be float16, float32, float64.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
input3 = fluid.layers.data(
name='input3', shape=[12, 10], dtype="int64")
self.assertRaises(TypeError, fluid.layers.sign, input2)
self.assertRaises(TypeError, fluid.layers.sign, input3)
input4 = fluid.layers.data(
name='input4', shape=[4], dtype="float16")
fluid.layers.sign(input4)
class TestSignAPI(unittest.TestCase):
def test_dygraph(self):
with fluid.dygraph.guard():
np_x = np.array([-1., 0., -0., 1.2, 1.5], dtype='float64')
x = paddle.to_tensor(np_x)
z = paddle.sign(x)
np_z = z.numpy()
z_expected = np.sign(np_x)
self.assertEqual((np_z == z_expected).all(), True)
def test_static(self):
with program_guard(Program(), Program()):
# The input type of sign_op must be Variable or numpy.ndarray.
input1 = 12
self.assertRaises(TypeError, paddle.tensor.math.sign, input1)
# The input dtype of sign_op must be float16, float32, float64.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
input3 = fluid.layers.data(
name='input3', shape=[12, 10], dtype="int64")
self.assertRaises(TypeError, paddle.tensor.math.sign, input2)
self.assertRaises(TypeError, paddle.tensor.math.sign, input3)
input4 = fluid.layers.data(
name='input4', shape=[4], dtype="float16")
paddle.sign(input4)
if __name__ == "__main__":
unittest.main()