You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/demo/executor_train_dataset.py

97 lines
3.4 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tarfile
import paddle.fluid as fluid
import paddle
from paddle.fluid import core
URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5 = '2a405a31508969b3ab823f42c0f522ca'
def bow_net(data,
label,
dict_dim=89528,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bowh = fluid.layers.tanh(bow)
# fc layer after conv
fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
# probability of each class
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
# mean loss
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
def train():
# Download data
with tarfile.open(paddle.dataset.common.download(URL, "imdb", MD5)) as tarf:
tarf.extractall(path='./')
tarf.close()
# Initialize dataset description
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_batch_size(128) # See API doc for how to change other fields
# define network
# input text data
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
dataset.set_use_var([data, label])
avg_cost, acc, prediction = bow_net(data, label)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost)
# Run startup program
startup_program = fluid.default_startup_program()
place = fluid.CPUPlace()
executor = fluid.Executor(place)
executor.run(startup_program)
main_program = fluid.default_main_program()
epochs = 10
filelist = ["train_data/part-%d" % i for i in range(12)]
dataset.set_filelist(filelist)
for i in range(epochs):
dataset.set_thread(4)
executor.train_from_dataset(
main_program, # This can be changed during iteration
dataset, # This can be changed during iteration
debug=False)
fluid.io.save_inference_model('imdb/epoch%d.model' % i,
[data.name, label.name], [acc], executor)
if __name__ == "__main__":
train()