You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
4.1 KiB
107 lines
4.1 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include "paddle/fluid/operators/uniform_random_op.h"
|
|
#include <string>
|
|
#include "paddle/fluid/framework/generator.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
class XPUUniformRandomKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
framework::Tensor *tensor = nullptr;
|
|
auto out_var = ctx.OutputVar("Out");
|
|
std::vector<int64_t> new_shape;
|
|
auto list_new_shape_tensor =
|
|
ctx.MultiInput<framework::Tensor>("ShapeTensorList");
|
|
if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
|
|
if (ctx.HasInput("ShapeTensor")) {
|
|
auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
|
|
new_shape = GetNewDataFromShapeTensor(shape_tensor);
|
|
} else if (list_new_shape_tensor.size() > 0) {
|
|
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
|
|
}
|
|
}
|
|
|
|
if (out_var->IsType<framework::SelectedRows>()) {
|
|
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
|
|
tensor = selected_rows->mutable_value();
|
|
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
|
|
if (!new_shape.empty()) shape = new_shape;
|
|
tensor->Resize(framework::make_ddim(shape));
|
|
selected_rows->mutable_rows()->reserve(shape[0]);
|
|
} else if (out_var->IsType<framework::LoDTensor>()) {
|
|
tensor = out_var->GetMutable<framework::LoDTensor>();
|
|
if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
|
|
} else {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"Expected type of Output(out) in uniform_random_op must be Tensor, "
|
|
"SelectedRows. But got "
|
|
"unsupport type: %s.",
|
|
framework::ToTypeName(out_var->Type())));
|
|
}
|
|
T *data = tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int64_t size = tensor->numel();
|
|
std::unique_ptr<T[]> data_cpu(new T[size]);
|
|
std::uniform_real_distribution<T> dist(
|
|
static_cast<T>(ctx.Attr<float>("min")),
|
|
static_cast<T>(ctx.Attr<float>("max")));
|
|
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
|
|
auto engine = framework::GetCPURandomEngine(seed);
|
|
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
data_cpu[i] = dist(*engine);
|
|
}
|
|
|
|
unsigned int diag_num =
|
|
static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
|
|
unsigned int diag_step =
|
|
static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
|
|
auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
|
|
if (diag_num > 0) {
|
|
PADDLE_ENFORCE_GT(
|
|
size, (diag_num - 1) * (diag_step + 1),
|
|
platform::errors::InvalidArgument(
|
|
"ShapeInvalid: the diagonal's elements is equal (num-1) "
|
|
"* (step-1) with num %d, step %d,"
|
|
"It should be smaller than %d, but received %d",
|
|
diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
|
|
for (int64_t i = 0; i < diag_num; ++i) {
|
|
int64_t pos = i * diag_step + i;
|
|
data_cpu[pos] = diag_val;
|
|
}
|
|
}
|
|
|
|
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), data,
|
|
platform::CPUPlace(), reinterpret_cast<void *>(data_cpu.get()),
|
|
size * sizeof(T));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_XPU_KERNEL(uniform_random,
|
|
paddle::operators::XPUUniformRandomKernel<float>);
|
|
|
|
#endif // PADDLE_WITH_XPU
|