You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pool_max_op.py

193 lines
6.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
N, C, D, H, W = x.shape
if global_pool:
ksize = [D, H, W]
paddings = [0, 0, 0]
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
mask = np.zeros((N, C, D_out, H_out, W_out))
for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
for n in range(N):
for c in range(C):
arr = x_masked[n, c, :, :, :]
index = np.where(arr == np.max(arr))
sub_deep = index[0][0]
sub_row = index[1][0]
sub_col = index[2][0]
index = ((d_start + sub_deep) * H +
(h_start + sub_row)) * W + w_start + sub_col
mask[n, c, k, i, j] = index
return out, mask
def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
N, C, H, W = x.shape
if global_pool:
ksize = [H, W]
paddings = [0, 0]
H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out))
mask = np.zeros((N, C, H_out, W_out))
for i in range(H_out):
for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0))
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, r_start:r_end, c_start:c_end]
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
for n in range(N):
for c in range(C):
arr = x_masked[n, c, :, :]
index = np.where(arr == np.max(arr))
sub_row = index[0][0]
sub_col = index[1][0]
index = (r_start + sub_row) * W + c_start + sub_col
mask[n, c, i, j] = index
return out, mask
class TestMaxPoolWithIndex_Op(OpTest):
def setUp(self):
self.init_test_case()
self.init_global()
input = np.random.random(self.shape).astype("float32")
output, mask = self.pool_forward_naive(input, self.ksize, self.strides,
self.paddings, self.global_pool)
output = output.astype("float32")
mask = mask.astype("int32")
self.attrs = {
'strides': self.strides,
'paddings': self.paddings,
'ksize': self.ksize,
'global_pooling': self.global_pool,
}
self.inputs = {'X': input}
self.outputs = {'Out': output, "Mask": mask}
def test_check_output(self):
self.check_output()
# def test_check_grad(self):
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
def init_test_case(self):
self.op_type = "max_pool3d_with_index"
self.pool_forward_naive = max_pool3D_forward_naive
self.shape = [2, 3, 5, 5, 5]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [1, 1, 1]
def init_global(self):
self.global_pool = False
class TestCase1(TestMaxPoolWithIndex_Op):
def init_global(self):
self.global_pool = True
class TestCase2(TestMaxPoolWithIndex_Op):
def init_test_case(self):
self.op_type = "max_pool3d_with_index"
self.pool_forward_naive = max_pool3D_forward_naive
self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3]
self.strides = [2, 2, 2]
self.paddings = [0, 0, 0]
def init_global(self):
self.global_pool = True
class TestCase3(TestCase2):
def init_global(self):
self.global_pool = False
#----------------max_pool2d_with_index----------------
class TestCase4(TestMaxPoolWithIndex_Op):
def init_test_case(self):
self.op_type = "max_pool2d_with_index"
self.pool_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [1, 1]
def init_global(self):
self.global_pool = True
class TestCase5(TestCase4):
def init_global(self):
self.global_pool = False
class TestCase6(TestMaxPoolWithIndex_Op):
def init_test_case(self):
self.op_type = "max_pool2d_with_index"
self.pool_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [2, 2]
self.paddings = [0, 0]
def init_global(self):
self.global_pool = True
class TestCase7(TestCase6):
def init_global(self):
self.global_pool = False
if __name__ == '__main__':
unittest.main()