You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
12 KiB
334 lines
12 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
DEFINE_int32(max_turn_num, 9,
|
|
"The max turn number: 1 for the small and 9 for the normal.");
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
constexpr int32_t kMaxTurnLen = 50;
|
|
|
|
static std::vector<float> result_data;
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<int64_t>> *turns;
|
|
std::vector<std::vector<float>> *turns_mask;
|
|
std::vector<std::vector<int64_t>> response; // response data : 1
|
|
std::vector<std::vector<float>> response_mask; // response mask data : 1
|
|
size_t batch_iter{0};
|
|
size_t batch_size{1};
|
|
size_t num_samples; // total number of samples
|
|
|
|
DataRecord() {
|
|
turns = new std::vector<std::vector<
|
|
int64_t>>[FLAGS_max_turn_num]; // turns data : FLAGS_max_turn_num
|
|
turns_mask = new std::vector<std::vector<
|
|
float>>[FLAGS_max_turn_num]; // turns mask data : FLAGS_max_turn_num
|
|
}
|
|
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: DataRecord() {
|
|
this->batch_size = batch_size;
|
|
Load(path);
|
|
}
|
|
|
|
~DataRecord() {
|
|
delete[] turns;
|
|
delete[] turns_mask;
|
|
}
|
|
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= response.size()) {
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
data.turns[i].assign(turns[i].begin() + batch_iter,
|
|
turns[i].begin() + batch_end);
|
|
}
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
|
|
turns_mask[i].begin() + batch_end);
|
|
}
|
|
data.response.assign(response.begin() + batch_iter,
|
|
response.begin() + batch_end);
|
|
data.response_mask.assign(response_mask.begin() + batch_iter,
|
|
response_mask.begin() + batch_end);
|
|
CHECK(!data.response.empty());
|
|
CHECK(!data.response_mask.empty());
|
|
CHECK_EQ(data.response.size(), data.response_mask.size());
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
size_t num_lines = 0;
|
|
result_data.clear();
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ',', &data);
|
|
CHECK_EQ(data.size(), (size_t)(2 * FLAGS_max_turn_num + 3));
|
|
// load turn data
|
|
std::vector<int64_t> turns_tmp[FLAGS_max_turn_num];
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
split_to_int64(data[i], ' ', &turns_tmp[i]);
|
|
turns[i].push_back(std::move(turns_tmp[i]));
|
|
}
|
|
// load turn_mask data
|
|
std::vector<float> turns_mask_tmp[FLAGS_max_turn_num];
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
split_to_float(data[FLAGS_max_turn_num + i], ' ', &turns_mask_tmp[i]);
|
|
turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
|
|
}
|
|
// load response data
|
|
std::vector<int64_t> response_tmp;
|
|
split_to_int64(data[2 * FLAGS_max_turn_num], ' ', &response_tmp);
|
|
response.push_back(std::move(response_tmp));
|
|
// load response_mask data
|
|
std::vector<float> response_mask_tmp;
|
|
split_to_float(data[2 * FLAGS_max_turn_num + 1], ' ', &response_mask_tmp);
|
|
response_mask.push_back(std::move(response_mask_tmp));
|
|
// load result data
|
|
float result_tmp;
|
|
result_tmp = std::stof(data[2 * FLAGS_max_turn_num + 2]);
|
|
result_data.push_back(result_tmp);
|
|
}
|
|
num_samples = num_lines;
|
|
}
|
|
};
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
PaddleTensor turns_tensor[FLAGS_max_turn_num];
|
|
PaddleTensor turns_mask_tensor[FLAGS_max_turn_num];
|
|
PaddleTensor response_tensor;
|
|
PaddleTensor response_mask_tensor;
|
|
std::string turn_pre = "turn_";
|
|
std::string turn_mask_pre = "turn_mask_";
|
|
|
|
auto one_batch = data->NextBatch();
|
|
PADDLE_ENFORCE(!one_batch.response.empty());
|
|
int size = one_batch.response[0].size();
|
|
CHECK_EQ(size, kMaxTurnLen);
|
|
// turn tensor assignment
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
turns_tensor[i].name = turn_pre + std::to_string(i);
|
|
turns_tensor[i].shape.assign({batch_size, size, 1});
|
|
turns_tensor[i].dtype = PaddleDType::INT64;
|
|
TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
|
|
}
|
|
// turn mask tensor assignment
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
|
|
turns_mask_tensor[i].shape.assign({batch_size, size, 1});
|
|
turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
|
|
TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
|
|
}
|
|
// response tensor assignment
|
|
response_tensor.name = "response";
|
|
response_tensor.shape.assign({batch_size, size, 1});
|
|
response_tensor.dtype = PaddleDType::INT64;
|
|
TensorAssignData<int64_t>(&response_tensor, one_batch.response);
|
|
// response mask tensor assignment
|
|
response_mask_tensor.name = "response_mask";
|
|
response_mask_tensor.shape.assign({batch_size, size, 1});
|
|
response_mask_tensor.dtype = PaddleDType::FLOAT32;
|
|
TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);
|
|
|
|
// Set inputs.
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
input_slots->push_back(std::move(turns_tensor[i]));
|
|
}
|
|
for (int i = 0; i < FLAGS_max_turn_num; ++i) {
|
|
input_slots->push_back(std::move(turns_mask_tensor[i]));
|
|
}
|
|
input_slots->push_back(std::move(response_tensor));
|
|
input_slots->push_back(std::move(response_mask_tensor));
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg) {
|
|
cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SwitchIrOptim(true);
|
|
}
|
|
|
|
void SetOptimConfig(AnalysisConfig *cfg) {
|
|
std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
|
|
cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
|
|
cfg->SwitchIrOptim(true);
|
|
cfg->SwitchSpecifyInputNames();
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int test_batch_num =
|
|
FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
|
LOG(INFO) << "The number of samples to be test: "
|
|
<< test_batch_num * FLAGS_batch_size;
|
|
for (int bid = 0; bid < test_batch_num; ++bid) {
|
|
input_slots.clear();
|
|
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
// Enable all the mkldnn supported ops except conv3d in dam
|
|
std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
|
|
"relu", "fc"};
|
|
cfg.SetMKLDNNOp(op_list);
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
|
auto output = outputs.back();
|
|
PADDLE_ENFORCE_GT(output.size(), 0);
|
|
size_t size = GetSize(output[0]);
|
|
PADDLE_ENFORCE_GT(size, 0);
|
|
float *result = static_cast<float *>(output[0].data.data());
|
|
for (size_t i = 0; i < size; i++) {
|
|
EXPECT_NEAR(result[i], result_data[i], 1e-3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_dam, profile) { profile(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_dam, profile_mkldnn) { profile(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_dam, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
void compare(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
// Enable all the mkldnn supported ops except conv3d in dam
|
|
std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
|
|
"relu"};
|
|
cfg.SetMKLDNNOp(op_list);
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
TEST(Analyzer_dam, compare_with_dynamic_memory_optim) {
|
|
// The small dam will core in CI, but works in local.
|
|
if (FLAGS_max_turn_num == 9) {
|
|
AnalysisConfig cfg, cfg1;
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
// Run the first time to force to update memory cache
|
|
SetConfig(&cfg);
|
|
cfg.EnableMemoryOptim();
|
|
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_dam, compare) { compare(); }
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_dam, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
// Save optim model
|
|
TEST(Analyzer_dam, save_optim_model) {
|
|
AnalysisConfig cfg;
|
|
std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
|
|
mkdir(optimModelPath.c_str(), 0777);
|
|
SetConfig(&cfg);
|
|
SaveOptimModel(&cfg, optimModelPath);
|
|
}
|
|
|
|
void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
|
|
const PaddlePredictor::Config *optim_config,
|
|
const std::vector<std::vector<PaddleTensor>> &inputs) {
|
|
PrintConfig(orig_config, true);
|
|
PrintConfig(optim_config, true);
|
|
std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
|
|
TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
|
|
TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
|
|
CompareResult(orig_outputs.back(), optim_outputs.back());
|
|
}
|
|
|
|
TEST(Analyzer_dam, compare_optim_orig) {
|
|
AnalysisConfig orig_cfg;
|
|
AnalysisConfig optim_cfg;
|
|
SetConfig(&orig_cfg);
|
|
SetOptimConfig(&optim_cfg);
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareOptimAndOrig(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|