You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc

194 lines
6.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
struct DataRecord {
std::vector<int64_t> data;
std::vector<size_t> lod;
// for dataset and nextbatch
size_t batch_iter{0};
std::vector<std::vector<size_t>> batched_lods;
std::vector<std::vector<int64_t>> batched_datas;
std::vector<std::vector<int64_t>> datasets;
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1) {
Load(path);
Prepare(batch_size);
batch_iter = 0;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
datasets.resize(0);
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, ';', &data);
std::vector<int64_t> words_ids;
split_to_int64(data[1], ' ', &words_ids);
datasets.emplace_back(words_ids);
}
}
void Prepare(int bs) {
if (bs == 1) {
batched_datas = datasets;
for (auto one_sentence : datasets) {
batched_lods.push_back({0, one_sentence.size()});
}
} else {
std::vector<int64_t> one_batch;
std::vector<size_t> lod{0};
int bs_id = 0;
for (auto one_sentence : datasets) {
bs_id++;
one_batch.insert(one_batch.end(), one_sentence.begin(),
one_sentence.end());
lod.push_back(lod.back() + one_sentence.size());
if (bs_id == bs) {
bs_id = 0;
batched_datas.push_back(one_batch);
batched_lods.push_back(lod);
one_batch.clear();
one_batch.resize(0);
lod.clear();
lod.resize(0);
lod.push_back(0);
}
}
if (one_batch.size() != 0) {
batched_datas.push_back(one_batch);
batched_lods.push_back(lod);
}
}
}
DataRecord NextBatch() {
DataRecord data;
data.data = batched_datas[batch_iter];
data.lod = batched_lods[batch_iter];
batch_iter++;
if (batch_iter >= batched_datas.size()) {
batch_iter = 0;
}
return data;
}
};
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
auto one_batch = data->NextBatch();
PaddleTensor input_tensor;
input_tensor.name = "word";
input_tensor.dtype = PaddleDType::INT64;
TensorAssignData<int64_t>(&input_tensor, {one_batch.data}, one_batch.lod);
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
input_slots->assign({input_tensor});
}
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.batched_datas.size() : 1;
LOG(INFO) << "number of samples: " << epoch;
for (int bid = 0; bid < epoch; ++bid) {
GetOneBatch(&input_slots, &data, FLAGS_batch_size);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
TEST(Analyzer_LAC, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
// the first inference result
const int64_t lac_ref_data[] = {
24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25,
44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14,
15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
PADDLE_ENFORCE_GT(outputs.size(), 0);
auto output = outputs.back();
PADDLE_ENFORCE_EQ(output.size(), 1UL);
size_t size = GetSize(output[0]);
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
PADDLE_ENFORCE_GE(size, batch1_size);
int64_t *pdata = static_cast<int64_t *>(output[0].data.data());
for (size_t i = 0; i < batch1_size; ++i) {
EXPECT_EQ(pdata[i], lac_ref_data[i]);
}
}
}
// Check the fuse status
TEST(Analyzer_LAC, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
EXPECT_EQ(num_ops, 11);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_LAC, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_LAC, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle