You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.0 KiB
194 lines
6.0 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
struct DataRecord {
|
|
std::vector<int64_t> data;
|
|
std::vector<size_t> lod;
|
|
// for dataset and nextbatch
|
|
size_t batch_iter{0};
|
|
std::vector<std::vector<size_t>> batched_lods;
|
|
std::vector<std::vector<int64_t>> batched_datas;
|
|
std::vector<std::vector<int64_t>> datasets;
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1) {
|
|
Load(path);
|
|
Prepare(batch_size);
|
|
batch_iter = 0;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
datasets.resize(0);
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ';', &data);
|
|
std::vector<int64_t> words_ids;
|
|
split_to_int64(data[1], ' ', &words_ids);
|
|
datasets.emplace_back(words_ids);
|
|
}
|
|
}
|
|
void Prepare(int bs) {
|
|
if (bs == 1) {
|
|
batched_datas = datasets;
|
|
for (auto one_sentence : datasets) {
|
|
batched_lods.push_back({0, one_sentence.size()});
|
|
}
|
|
} else {
|
|
std::vector<int64_t> one_batch;
|
|
std::vector<size_t> lod{0};
|
|
int bs_id = 0;
|
|
for (auto one_sentence : datasets) {
|
|
bs_id++;
|
|
one_batch.insert(one_batch.end(), one_sentence.begin(),
|
|
one_sentence.end());
|
|
lod.push_back(lod.back() + one_sentence.size());
|
|
if (bs_id == bs) {
|
|
bs_id = 0;
|
|
batched_datas.push_back(one_batch);
|
|
batched_lods.push_back(lod);
|
|
one_batch.clear();
|
|
one_batch.resize(0);
|
|
lod.clear();
|
|
lod.resize(0);
|
|
lod.push_back(0);
|
|
}
|
|
}
|
|
if (one_batch.size() != 0) {
|
|
batched_datas.push_back(one_batch);
|
|
batched_lods.push_back(lod);
|
|
}
|
|
}
|
|
}
|
|
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
data.data = batched_datas[batch_iter];
|
|
data.lod = batched_lods[batch_iter];
|
|
batch_iter++;
|
|
if (batch_iter >= batched_datas.size()) {
|
|
batch_iter = 0;
|
|
}
|
|
return data;
|
|
}
|
|
};
|
|
|
|
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
auto one_batch = data->NextBatch();
|
|
PaddleTensor input_tensor;
|
|
input_tensor.name = "word";
|
|
input_tensor.dtype = PaddleDType::INT64;
|
|
TensorAssignData<int64_t>(&input_tensor, {one_batch.data}, one_batch.lod);
|
|
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
|
|
input_slots->assign({input_tensor});
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg) {
|
|
cfg->SetModel(FLAGS_infer_model);
|
|
cfg->DisableGpu();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SwitchIrOptim();
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.batched_datas.size() : 1;
|
|
LOG(INFO) << "number of samples: " << epoch;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
GetOneBatch(&input_slots, &data, FLAGS_batch_size);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
TEST(Analyzer_LAC, profile) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
// the first inference result
|
|
const int64_t lac_ref_data[] = {
|
|
24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25,
|
|
44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14,
|
|
15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
|
|
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
|
auto output = outputs.back();
|
|
PADDLE_ENFORCE_EQ(output.size(), 1UL);
|
|
size_t size = GetSize(output[0]);
|
|
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
|
|
PADDLE_ENFORCE_GE(size, batch1_size);
|
|
int64_t *pdata = static_cast<int64_t *>(output[0].data.data());
|
|
for (size_t i = 0; i < batch1_size; ++i) {
|
|
EXPECT_EQ(pdata[i], lac_ref_data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_LAC, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
|
|
EXPECT_EQ(num_ops, 11);
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
TEST(Analyzer_LAC, compare) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_LAC, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|