You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.0 KiB
178 lines
6.0 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<int64_t>> word, mention;
|
|
std::vector<size_t> lod; // two inputs have the same lod info.
|
|
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: batch_size(batch_size) {
|
|
Load(path);
|
|
}
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= word.size()) {
|
|
GetInputPerBatch(word, &data.word, &data.lod, batch_iter, batch_end);
|
|
GetInputPerBatch(mention, &data.mention, &data.lod, batch_iter,
|
|
batch_end);
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ';', &data);
|
|
// load word data
|
|
std::vector<int64_t> word_data;
|
|
split_to_int64(data[1], ' ', &word_data);
|
|
// load mention data
|
|
std::vector<int64_t> mention_data;
|
|
split_to_int64(data[3], ' ', &mention_data);
|
|
word.push_back(std::move(word_data));
|
|
mention.push_back(std::move(mention_data));
|
|
}
|
|
num_samples = num_lines;
|
|
}
|
|
};
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
|
|
PaddleTensor lod_word_tensor, lod_mention_tensor;
|
|
lod_word_tensor.name = "word";
|
|
lod_mention_tensor.name = "mention";
|
|
auto one_batch = data->NextBatch();
|
|
// assign data
|
|
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.word, one_batch.lod);
|
|
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.mention,
|
|
one_batch.lod);
|
|
// Set inputs.
|
|
input_slots->assign({lod_word_tensor, lod_mention_tensor});
|
|
for (auto &tensor : *input_slots) {
|
|
tensor.dtype = PaddleDType::INT64;
|
|
}
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg, bool memory_load = false) {
|
|
if (memory_load) {
|
|
std::string buffer_prog, buffer_param;
|
|
ReadBinaryFile(FLAGS_infer_model + "/__model__", &buffer_prog);
|
|
ReadBinaryFile(FLAGS_infer_model + "/param", &buffer_param);
|
|
cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
|
|
buffer_param.size());
|
|
} else {
|
|
cfg->SetModel(FLAGS_infer_model + "/__model__",
|
|
FLAGS_infer_model + "/param");
|
|
}
|
|
cfg->DisableGpu();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SwitchIrOptim();
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
|
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
PrepareInputs(&input_slots, &data);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
void profile(bool memory_load = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg, memory_load);
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
// the first inference result
|
|
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
|
|
48, 39, 38, 16, 25};
|
|
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
|
auto output = outputs.back();
|
|
PADDLE_ENFORCE_EQ(output.size(), 1UL);
|
|
size_t size = GetSize(output[0]);
|
|
PADDLE_ENFORCE_GT(size, 0);
|
|
int64_t *result = static_cast<int64_t *>(output[0].data.data());
|
|
for (size_t i = 0; i < std::min(11UL, size); i++) {
|
|
EXPECT_EQ(result[i], chinese_ner_result_data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Analyzer_Chinese_ner, profile) { profile(); }
|
|
|
|
TEST(Analyzer_Chinese_ner, profile_memory_load) {
|
|
profile(true /* memory_load */);
|
|
}
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_Chinese_ner, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
|
|
EXPECT_EQ(num_ops, 14);
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
TEST(Analyzer_Chinese_ner, compare) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_Chinese_ner, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|