You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc

178 lines
6.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
struct DataRecord {
std::vector<std::vector<int64_t>> word, mention;
std::vector<size_t> lod; // two inputs have the same lod info.
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= word.size()) {
GetInputPerBatch(word, &data.word, &data.lod, batch_iter, batch_end);
GetInputPerBatch(mention, &data.mention, &data.lod, batch_iter,
batch_end);
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, ';', &data);
// load word data
std::vector<int64_t> word_data;
split_to_int64(data[1], ' ', &word_data);
// load mention data
std::vector<int64_t> mention_data;
split_to_int64(data[3], ' ', &mention_data);
word.push_back(std::move(word_data));
mention.push_back(std::move(mention_data));
}
num_samples = num_lines;
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
PaddleTensor lod_word_tensor, lod_mention_tensor;
lod_word_tensor.name = "word";
lod_mention_tensor.name = "mention";
auto one_batch = data->NextBatch();
// assign data
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.word, one_batch.lod);
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.mention,
one_batch.lod);
// Set inputs.
input_slots->assign({lod_word_tensor, lod_mention_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
void SetConfig(AnalysisConfig *cfg, bool memory_load = false) {
if (memory_load) {
std::string buffer_prog, buffer_param;
ReadBinaryFile(FLAGS_infer_model + "/__model__", &buffer_prog);
ReadBinaryFile(FLAGS_infer_model + "/param", &buffer_param);
cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
buffer_param.size());
} else {
cfg->SetModel(FLAGS_infer_model + "/__model__",
FLAGS_infer_model + "/param");
}
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
for (int bid = 0; bid < epoch; ++bid) {
PrepareInputs(&input_slots, &data);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
void profile(bool memory_load = false) {
AnalysisConfig cfg;
SetConfig(&cfg, memory_load);
std::vector<std::vector<PaddleTensor>> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
48, 39, 38, 16, 25};
PADDLE_ENFORCE_GT(outputs.size(), 0);
auto output = outputs.back();
PADDLE_ENFORCE_EQ(output.size(), 1UL);
size_t size = GetSize(output[0]);
PADDLE_ENFORCE_GT(size, 0);
int64_t *result = static_cast<int64_t *>(output[0].data.data());
for (size_t i = 0; i < std::min(11UL, size); i++) {
EXPECT_EQ(result[i], chinese_ner_result_data[i]);
}
}
}
TEST(Analyzer_Chinese_ner, profile) { profile(); }
TEST(Analyzer_Chinese_ner, profile_memory_load) {
profile(true /* memory_load */);
}
// Check the fuse status
TEST(Analyzer_Chinese_ner, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
EXPECT_EQ(num_ops, 14);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Chinese_ner, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_Chinese_ner, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle