You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.7 KiB
168 lines
6.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/prior_box_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PriorBoxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
|
"Input(X) of SequenceSliceOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Image"),
|
|
"Input(Offset) of SequenceSliceOp should not be null.");
|
|
|
|
auto image_dims = ctx->GetInputDim("Image");
|
|
auto input_dims = ctx->GetInputDim("Input");
|
|
PADDLE_ENFORCE(image_dims.size() == 4,
|
|
"The format of input tensor is NCHW.");
|
|
|
|
auto min_sizes = ctx->Attrs().Get<std::vector<int>>("min_sizes");
|
|
auto max_sizes = ctx->Attrs().Get<std::vector<int>>("max_sizes");
|
|
auto variances = ctx->Attrs().Get<std::vector<float>>("variances");
|
|
auto input_aspect_ratio =
|
|
ctx->Attrs().Get<std::vector<float>>("aspect_ratios");
|
|
bool flip = ctx->Attrs().Get<bool>("flip");
|
|
|
|
PADDLE_ENFORCE_GT(min_sizes.size(), 0, "must provide min_size.");
|
|
for (size_t i = 0; i < min_sizes.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i);
|
|
}
|
|
|
|
std::vector<float> aspect_ratios;
|
|
expand_aspect_ratios(input_aspect_ratio, flip, aspect_ratios);
|
|
|
|
int num_priors = aspect_ratios.size() * min_sizes.size();
|
|
if (max_sizes.size() > 0) {
|
|
PADDLE_ENFORCE_EQ(max_sizes.size(), min_sizes.size(),
|
|
"The length of min_size and max_size must be equal.");
|
|
for (size_t i = 0; i < min_sizes.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(max_sizes[i], min_sizes[i],
|
|
"max_size[%d] must be greater than min_size[%d].", i,
|
|
i);
|
|
num_priors += 1;
|
|
}
|
|
}
|
|
|
|
if (variances.size() > 1) {
|
|
PADDLE_ENFORCE_EQ(variances.size(), 4,
|
|
"Must and only provide 4 variance.");
|
|
for (size_t i = 0; i < variances.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(variances[i], 0.0,
|
|
"variance[%d] must be greater than 0.", i);
|
|
}
|
|
} else if (variances.size() == 1) {
|
|
PADDLE_ENFORCE_GT(variances[0], 0.0,
|
|
"variance[0] must be greater than 0.");
|
|
}
|
|
|
|
const int img_h = ctx->Attrs().Get<int>("img_h");
|
|
PADDLE_ENFORCE_GT(img_h, 0, "img_h should be larger than 0.");
|
|
const int img_w = ctx->Attrs().Get<int>("img_w");
|
|
PADDLE_ENFORCE_GT(img_w, 0, "img_w should be larger than 0.");
|
|
|
|
const float step_h = ctx->Attrs().Get<float>("step_h");
|
|
PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0.");
|
|
const float step_w = ctx->Attrs().Get<float>("step_w");
|
|
PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0.");
|
|
|
|
const int layer_height = input_dims[3];
|
|
const int layer_width = input_dims[2];
|
|
|
|
std::vector<int64_t> dim_vec(3);
|
|
// Since all images in a batch has same height and width, we only need to
|
|
// generate one set of priors which can be shared across all images.
|
|
dim_vec[0] = 1;
|
|
// 2 channels. First channel stores the mean of each prior coordinate.
|
|
// Second channel stores the variance of each prior coordinate.
|
|
dim_vec[1] = 2;
|
|
dim_vec[2] = layer_width * layer_height * num_priors * 4;
|
|
PADDLE_ENFORCE_GT(dim_vec[2], 0,
|
|
"output_dim[2] must larger than 0."
|
|
"check your data dims");
|
|
auto output_dim = framework::make_ddim(dim_vec);
|
|
ctx->SetOutputDim("Out", output_dim);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("Image")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
PriorBoxOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Input",
|
|
"(Tensor), "
|
|
"the input feature data of PriorBoxOp.");
|
|
AddInput("Image",
|
|
"(Tensor), "
|
|
"the input image data of PriorBoxOp.");
|
|
AddOutput("Out", "(Tensor), the output prior boxes of PriorBoxOp.");
|
|
AddAttr<std::vector<int>>("min_sizes", "(vector<int>) ",
|
|
"List of min sizes of generated prior boxes.");
|
|
AddAttr<std::vector<int>>("max_sizes", "(vector<int>) ",
|
|
"List of max sizes of generated prior boxes.");
|
|
AddAttr<std::vector<float>>(
|
|
"aspect_ratios", "(vector<float>) ",
|
|
"List of aspect ratios of generated prior boxes.")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<float>>(
|
|
"variances", "(vector<float>) ",
|
|
"List of variances to be encoded in prior boxes.")
|
|
.SetDefault({0.1});
|
|
AddAttr<bool>("flip", "(bool) ", "Whether to flip aspect ratios.")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("clip", "(bool) ", "Whether to clip out-of-boundary boxes.")
|
|
.SetDefault(true);
|
|
AddAttr<int>("img_w", "").SetDefault(0);
|
|
AddAttr<int>("img_h", "").SetDefault(0);
|
|
AddAttr<float>("step_w",
|
|
"Prior boxes step across width, 0 for auto calculation.")
|
|
.SetDefault(0.0);
|
|
AddAttr<float>("step_h",
|
|
"Prior boxes step across height, 0 for auto calculation.")
|
|
.SetDefault(0.0);
|
|
AddAttr<float>("offset",
|
|
"(float) "
|
|
"Prior boxes center offset.")
|
|
.SetDefault(0.5);
|
|
AddComment(R"DOC(
|
|
Prior box operator
|
|
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
|
|
Please get more information from the following papers:
|
|
https://arxiv.org/abs/1512.02325.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
prior_box, ops::PriorBoxOpKernel<paddle::platform::CPUPlace, float>,
|
|
ops::PriorBoxOpKernel<paddle::platform::CPUPlace, double>);
|