You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
8.9 KiB
284 lines
8.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <ctime>
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/variable.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
#define CLOG std::cout
|
|
|
|
const std::string kForward = "FORWARD";
|
|
const std::string kBackward = "BACKWARD";
|
|
const std::string kBoth = "BOTH";
|
|
|
|
struct Formater {
|
|
std::string message;
|
|
std::string name;
|
|
std::vector<int> dims;
|
|
std::type_index dtype{typeid(char)};
|
|
framework::LoD lod;
|
|
int summarize;
|
|
void* data{nullptr};
|
|
|
|
void operator()(size_t size) {
|
|
PrintMessage();
|
|
PrintName();
|
|
PrintDims();
|
|
PrintDtype();
|
|
PrintLod();
|
|
PrintData(size);
|
|
}
|
|
|
|
private:
|
|
void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message; }
|
|
void PrintName() {
|
|
if (!name.empty()) {
|
|
CLOG << "Tensor[" << name << "]" << std::endl;
|
|
}
|
|
}
|
|
void PrintDims() {
|
|
if (!dims.empty()) {
|
|
CLOG << "\tshape: [";
|
|
for (auto i : dims) {
|
|
CLOG << i << ",";
|
|
}
|
|
CLOG << "]" << std::endl;
|
|
}
|
|
}
|
|
void PrintDtype() {
|
|
if (dtype.hash_code() != typeid(char).hash_code()) {
|
|
CLOG << "\tdtype: " << dtype.name() << std::endl;
|
|
}
|
|
}
|
|
void PrintLod() {
|
|
if (!lod.empty()) {
|
|
CLOG << "\tLoD: [";
|
|
for (auto level : lod) {
|
|
CLOG << "[ ";
|
|
for (auto i : level) {
|
|
CLOG << i << ",";
|
|
}
|
|
CLOG << " ]";
|
|
}
|
|
CLOG << "]" << std::endl;
|
|
}
|
|
}
|
|
|
|
void PrintData(size_t size) {
|
|
PADDLE_ENFORCE_NOT_NULL(data);
|
|
// print float
|
|
if (dtype.hash_code() == typeid(float).hash_code()) {
|
|
Display<float>(size);
|
|
}
|
|
if (dtype.hash_code() == typeid(double).hash_code()) {
|
|
Display<double>(size);
|
|
}
|
|
if (dtype.hash_code() == typeid(int).hash_code()) {
|
|
Display<int>(size);
|
|
}
|
|
if (dtype.hash_code() == typeid(int64_t).hash_code()) {
|
|
Display<int64_t>(size);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Display(size_t size) {
|
|
auto* d = (T*)data;
|
|
CLOG << "\tdata: ";
|
|
if (summarize != -1) {
|
|
summarize = std::min(size, (size_t)summarize);
|
|
for (int i = 0; i < summarize; i++) {
|
|
CLOG << d[i] << ",";
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < size; i++) {
|
|
CLOG << d[i] << ",";
|
|
}
|
|
}
|
|
CLOG << std::endl;
|
|
}
|
|
};
|
|
|
|
// TODO(ChunweiYan) there should be some other printers for TensorArray
|
|
class TensorPrintOp : public framework::OperatorBase {
|
|
public:
|
|
TensorPrintOp(const std::string& type,
|
|
const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
TensorPrintOp(const TensorPrintOp& o)
|
|
: framework::OperatorBase(
|
|
static_cast<const framework::OperatorBase&>(o)) {
|
|
PADDLE_THROW("Not implemented.");
|
|
}
|
|
|
|
void Run(const framework::Scope& scope,
|
|
const platform::Place& place) const override {
|
|
const framework::Variable* in_var_ptr = nullptr;
|
|
std::string phase = kForward;
|
|
std::string printed_var_name = "";
|
|
|
|
auto& inputs = Inputs();
|
|
if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) {
|
|
in_var_ptr = scope.FindVar(Input("In"));
|
|
printed_var_name = Inputs("In").front();
|
|
} else if (inputs.find("In@GRAD") != inputs.end() &&
|
|
!Inputs("In@GRAD").empty()) {
|
|
in_var_ptr = scope.FindVar(Input("In@GRAD"));
|
|
printed_var_name = Inputs("In@GRAD").front();
|
|
phase = kBackward;
|
|
} else {
|
|
PADDLE_THROW("Unknown phase, should be forward or backward.");
|
|
}
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(in_var_ptr);
|
|
|
|
auto& in_tensor = in_var_ptr->Get<framework::LoDTensor>();
|
|
auto* out_var_ptr = scope.FindVar(Output("Out"));
|
|
auto& out_tensor = *out_var_ptr->GetMutable<framework::LoDTensor>();
|
|
|
|
// Just copy data from input tensor to output tensor
|
|
// output tensor share same memory with input tensor
|
|
out_tensor.ShareDataWith(in_tensor);
|
|
out_tensor.set_lod(in_tensor.lod());
|
|
|
|
std::string print_phase = Attr<std::string>("print_phase");
|
|
if (print_phase != phase && print_phase != kBoth) {
|
|
return;
|
|
}
|
|
|
|
int first_n = Attr<int>("first_n");
|
|
if (first_n > 0 && ++times_ > first_n) return;
|
|
|
|
framework::LoDTensor printed_tensor;
|
|
printed_tensor.set_lod(in_tensor.lod());
|
|
printed_tensor.Resize(in_tensor.dims());
|
|
|
|
if (platform::is_cpu_place(in_tensor.place())) {
|
|
printed_tensor.ShareDataWith(in_tensor);
|
|
} else {
|
|
// copy data to cpu to print
|
|
platform::CPUPlace place;
|
|
framework::Copy(in_tensor, place, &printed_tensor);
|
|
}
|
|
|
|
Formater formater;
|
|
if (Attr<bool>("print_tensor_name")) {
|
|
formater.name = printed_var_name;
|
|
}
|
|
if (Attr<bool>("print_tensor_type")) {
|
|
formater.dtype = printed_tensor.type();
|
|
}
|
|
if (Attr<bool>("print_tensor_shape")) {
|
|
auto& dims = printed_tensor.dims();
|
|
formater.dims.resize(dims.size());
|
|
for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i];
|
|
}
|
|
if (Attr<bool>("print_tensor_lod")) {
|
|
formater.lod = printed_tensor.lod();
|
|
}
|
|
formater.summarize = Attr<int>("summarize");
|
|
formater.data = (void*)printed_tensor.data<void>();
|
|
formater(printed_tensor.numel());
|
|
}
|
|
|
|
private:
|
|
mutable int times_{0};
|
|
};
|
|
|
|
class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
PrintOpProtoAndCheckMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("In", "Input tensor to be displayed.");
|
|
AddAttr<int>("first_n", "Only log `first_n` number of times.");
|
|
AddAttr<std::string>("message", "A string message to print as a prefix.");
|
|
AddAttr<int>("summarize", "Number of elements printed.");
|
|
AddAttr<bool>("print_tensor_name", "Whether to print the tensor name.");
|
|
AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype.");
|
|
AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape.");
|
|
AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod.");
|
|
AddAttr<std::string>(
|
|
"print_phase",
|
|
"(string, default 'BOTH') Which phase to display including 'FORWARD' "
|
|
"'BACKWARD' and 'BOTH'.")
|
|
.SetDefault(kBoth)
|
|
.InEnum({kForward, kBackward, kBoth});
|
|
AddOutput("Out", "Output tensor with same data as input tensor.");
|
|
AddComment(R"DOC(
|
|
Creates a print op that will print when a tensor is accessed.
|
|
|
|
Wraps the tensor passed in so that whenever that a tensor is accessed,
|
|
the message `message` is printed, along with the current value of the
|
|
tensor `t`.)DOC");
|
|
}
|
|
};
|
|
|
|
class InferShapeForward : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext* context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null.");
|
|
context->ShareLoD("In", /*->*/ "Out");
|
|
context->SetOutputDim("Out", context->GetInputDim("In"));
|
|
}
|
|
};
|
|
|
|
class InferShapeBackward : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext* context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("In@GRAD"),
|
|
"Input(In@GRAD) should not be null.");
|
|
context->ShareLoD("In@GRAD", /*->*/ "Out");
|
|
context->SetOutputDim("Out", context->GetInputDim("In@GRAD"));
|
|
}
|
|
};
|
|
|
|
class InferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc& op_desc,
|
|
framework::BlockDesc* block) const override {}
|
|
};
|
|
|
|
class PrintOpProtoAndCheckGradOpMaker
|
|
: public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto* op_desc_ptr = new framework::OpDesc();
|
|
op_desc_ptr->SetType("print_grad");
|
|
op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out"));
|
|
op_desc_ptr->SetOutput("Out", InputGrad("In"));
|
|
op_desc_ptr->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker,
|
|
ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward,
|
|
ops::InferVarType);
|
|
REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward);
|