You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
8.4 KiB
231 lines
8.4 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <stdio.h>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
|
|
const bool& ceil_mode,
|
|
const bool& adaptive,
|
|
const std::vector<int>& ksize,
|
|
const std::vector<int>& strides,
|
|
const std::vector<int>& paddings) {
|
|
std::vector<int> output_shape = input_shape;
|
|
if (adaptive) {
|
|
output_shape[0] = ksize[0];
|
|
output_shape[1] = ksize[1];
|
|
} else {
|
|
int output_h, output_w;
|
|
if (!ceil_mode) {
|
|
output_h = (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
|
|
output_w = (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
|
|
} else {
|
|
output_h =
|
|
(input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
|
|
strides[0] +
|
|
1;
|
|
output_w =
|
|
(input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
|
|
strides[1] +
|
|
1;
|
|
}
|
|
output_shape[0] = output_h;
|
|
output_shape[1] = output_w;
|
|
}
|
|
return output_shape;
|
|
}
|
|
|
|
class PoolPlugin : public PluginTensorRT {
|
|
protected:
|
|
size_t getSerializationSize() override {
|
|
return SerializedSize(getPluginType()) + SerializedSize(ceil_mode_) +
|
|
SerializedSize(pool_type_) + SerializedSize(adaptive_) +
|
|
SerializedSize(ksize_) + SerializedSize(strides_) +
|
|
SerializedSize(paddings_) + SerializedSize(input_shape_) +
|
|
SerializedSize(output_shape_) + getBaseSerializationSize();
|
|
}
|
|
|
|
// TRT will call this func when we need to serialize the configuration of
|
|
// tensorrt.
|
|
void serialize(void* buffer) override {
|
|
SerializeValue(&buffer, getPluginType());
|
|
serializeBase(buffer);
|
|
SerializeValue(&buffer, ceil_mode_);
|
|
SerializeValue(&buffer, pool_type_);
|
|
SerializeValue(&buffer, adaptive_);
|
|
SerializeValue(&buffer, ksize_);
|
|
SerializeValue(&buffer, strides_);
|
|
SerializeValue(&buffer, paddings_);
|
|
SerializeValue(&buffer, input_shape_);
|
|
SerializeValue(&buffer, output_shape_);
|
|
}
|
|
|
|
public:
|
|
enum class PoolType {
|
|
max = 0,
|
|
avg,
|
|
};
|
|
PoolPlugin() {}
|
|
PoolPlugin(bool ceil_mode, PoolType pool_type, bool adaptive,
|
|
std::vector<int> ksize, std::vector<int> strides,
|
|
std::vector<int> paddings, std::vector<int> input_shape)
|
|
: ceil_mode_(ceil_mode),
|
|
pool_type_(pool_type),
|
|
adaptive_(adaptive),
|
|
ksize_(ksize),
|
|
strides_(strides),
|
|
paddings_(paddings),
|
|
input_shape_(input_shape) {
|
|
output_shape_ = input_shape_;
|
|
std::vector<int> output_shape =
|
|
CalcOutputSize({input_shape_[1], input_shape_[2]}, ceil_mode_,
|
|
adaptive_, ksize_, strides_, paddings_);
|
|
output_shape_[1] = output_shape[0];
|
|
output_shape_[2] = output_shape[1];
|
|
}
|
|
|
|
// It was used for tensorrt deserialization.
|
|
// It should not be called by users.
|
|
PoolPlugin(void const* serialData, size_t serialLength) {
|
|
deserializeBase(serialData, serialLength);
|
|
DeserializeValue(&serialData, &serialLength, &ceil_mode_);
|
|
DeserializeValue(&serialData, &serialLength, &pool_type_);
|
|
DeserializeValue(&serialData, &serialLength, &adaptive_);
|
|
DeserializeValue(&serialData, &serialLength, &ksize_);
|
|
DeserializeValue(&serialData, &serialLength, &strides_);
|
|
DeserializeValue(&serialData, &serialLength, &paddings_);
|
|
DeserializeValue(&serialData, &serialLength, &input_shape_);
|
|
DeserializeValue(&serialData, &serialLength, &output_shape_);
|
|
}
|
|
|
|
PoolPlugin* clone() const override {
|
|
return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, ksize_, strides_,
|
|
paddings_, input_shape_);
|
|
}
|
|
|
|
const char* getPluginType() const override { return "pool_plugin"; }
|
|
int getNbOutputs() const override { return 1; }
|
|
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
|
|
int nbInputDims) override;
|
|
int initialize() override { return 0; }
|
|
int enqueue(int batchSize, const void* const* inputs, void** outputs,
|
|
void* workspace, cudaStream_t stream) override;
|
|
|
|
private:
|
|
bool ceil_mode_;
|
|
PoolType pool_type_;
|
|
bool adaptive_;
|
|
std::vector<int> ksize_;
|
|
std::vector<int> strides_;
|
|
std::vector<int> paddings_;
|
|
std::vector<int> input_shape_;
|
|
std::vector<int> output_shape_;
|
|
};
|
|
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
class PoolPluginDynamic : public DynamicPluginTensorRT {
|
|
public:
|
|
PoolPluginDynamic() {}
|
|
PoolPluginDynamic(const bool& ceil_mode, const std::string& pool_type,
|
|
const bool& adaptive, const std::vector<int>& ksize,
|
|
const std::vector<int>& strides,
|
|
const std::vector<int>& paddings, const bool& is_global)
|
|
: ceil_mode_(ceil_mode),
|
|
pool_type_(pool_type),
|
|
adaptive_(adaptive),
|
|
ksize_(ksize),
|
|
strides_(strides),
|
|
paddings_(paddings),
|
|
is_global_(is_global) {}
|
|
|
|
PoolPluginDynamic(void const* serialData, size_t serialLength) {
|
|
deserializeBase(serialData, serialLength);
|
|
DeserializeValue(&serialData, &serialLength, &ceil_mode_);
|
|
const char* pool_type;
|
|
DeserializeValue(&serialData, &serialLength, &pool_type);
|
|
pool_type_ = std::string(pool_type);
|
|
DeserializeValue(&serialData, &serialLength, &adaptive_);
|
|
DeserializeValue(&serialData, &serialLength, &ksize_);
|
|
DeserializeValue(&serialData, &serialLength, &strides_);
|
|
DeserializeValue(&serialData, &serialLength, &paddings_);
|
|
DeserializeValue(&serialData, &serialLength, &is_global_);
|
|
}
|
|
~PoolPluginDynamic() {}
|
|
nvinfer1::IPluginV2DynamicExt* clone() const override {
|
|
return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, ksize_,
|
|
strides_, paddings_, is_global_);
|
|
}
|
|
|
|
const char* getPluginType() const override { return "pool_plugin"; }
|
|
int getNbOutputs() const override { return 1; }
|
|
int initialize() override { return 0; }
|
|
|
|
size_t getSerializationSize() const override;
|
|
void serialize(void* buffer) const override;
|
|
|
|
nvinfer1::DimsExprs getOutputDimensions(
|
|
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
|
|
nvinfer1::IExprBuilder& expr_builder) override;
|
|
|
|
bool supportsFormatCombination(int pos,
|
|
const nvinfer1::PluginTensorDesc* inOut,
|
|
int nbInputs, int nbOutputs) override;
|
|
|
|
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
|
|
int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc* out,
|
|
int nbOutputs) override {}
|
|
|
|
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
|
|
int nbInputs,
|
|
const nvinfer1::PluginTensorDesc* outputs,
|
|
int nbOutputs) const override {
|
|
return 0;
|
|
}
|
|
|
|
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
|
|
const nvinfer1::PluginTensorDesc* outputDesc,
|
|
const void* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) override;
|
|
nvinfer1::DataType getOutputDataType(int index,
|
|
const nvinfer1::DataType* inputTypes,
|
|
int nbInputs) const override;
|
|
|
|
void destroy() override { delete this; }
|
|
|
|
private:
|
|
bool ceil_mode_;
|
|
std::string pool_type_;
|
|
bool adaptive_;
|
|
std::vector<int> ksize_;
|
|
std::vector<int> strides_;
|
|
std::vector<int> paddings_;
|
|
bool is_global_;
|
|
};
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|