You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h

231 lines
8.4 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdio.h>
#include <cassert>
#include <string>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
const bool& ceil_mode,
const bool& adaptive,
const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings) {
std::vector<int> output_shape = input_shape;
if (adaptive) {
output_shape[0] = ksize[0];
output_shape[1] = ksize[1];
} else {
int output_h, output_w;
if (!ceil_mode) {
output_h = (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
output_w = (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
} else {
output_h =
(input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
strides[0] +
1;
output_w =
(input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
strides[1] +
1;
}
output_shape[0] = output_h;
output_shape[1] = output_w;
}
return output_shape;
}
class PoolPlugin : public PluginTensorRT {
protected:
size_t getSerializationSize() override {
return SerializedSize(getPluginType()) + SerializedSize(ceil_mode_) +
SerializedSize(pool_type_) + SerializedSize(adaptive_) +
SerializedSize(ksize_) + SerializedSize(strides_) +
SerializedSize(paddings_) + SerializedSize(input_shape_) +
SerializedSize(output_shape_) + getBaseSerializationSize();
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void serialize(void* buffer) override {
SerializeValue(&buffer, getPluginType());
serializeBase(buffer);
SerializeValue(&buffer, ceil_mode_);
SerializeValue(&buffer, pool_type_);
SerializeValue(&buffer, adaptive_);
SerializeValue(&buffer, ksize_);
SerializeValue(&buffer, strides_);
SerializeValue(&buffer, paddings_);
SerializeValue(&buffer, input_shape_);
SerializeValue(&buffer, output_shape_);
}
public:
enum class PoolType {
max = 0,
avg,
};
PoolPlugin() {}
PoolPlugin(bool ceil_mode, PoolType pool_type, bool adaptive,
std::vector<int> ksize, std::vector<int> strides,
std::vector<int> paddings, std::vector<int> input_shape)
: ceil_mode_(ceil_mode),
pool_type_(pool_type),
adaptive_(adaptive),
ksize_(ksize),
strides_(strides),
paddings_(paddings),
input_shape_(input_shape) {
output_shape_ = input_shape_;
std::vector<int> output_shape =
CalcOutputSize({input_shape_[1], input_shape_[2]}, ceil_mode_,
adaptive_, ksize_, strides_, paddings_);
output_shape_[1] = output_shape[0];
output_shape_[2] = output_shape[1];
}
// It was used for tensorrt deserialization.
// It should not be called by users.
PoolPlugin(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &ceil_mode_);
DeserializeValue(&serialData, &serialLength, &pool_type_);
DeserializeValue(&serialData, &serialLength, &adaptive_);
DeserializeValue(&serialData, &serialLength, &ksize_);
DeserializeValue(&serialData, &serialLength, &strides_);
DeserializeValue(&serialData, &serialLength, &paddings_);
DeserializeValue(&serialData, &serialLength, &input_shape_);
DeserializeValue(&serialData, &serialLength, &output_shape_);
}
PoolPlugin* clone() const override {
return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, ksize_, strides_,
paddings_, input_shape_);
}
const char* getPluginType() const override { return "pool_plugin"; }
int getNbOutputs() const override { return 1; }
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
int nbInputDims) override;
int initialize() override { return 0; }
int enqueue(int batchSize, const void* const* inputs, void** outputs,
void* workspace, cudaStream_t stream) override;
private:
bool ceil_mode_;
PoolType pool_type_;
bool adaptive_;
std::vector<int> ksize_;
std::vector<int> strides_;
std::vector<int> paddings_;
std::vector<int> input_shape_;
std::vector<int> output_shape_;
};
#if IS_TRT_VERSION_GE(6000)
class PoolPluginDynamic : public DynamicPluginTensorRT {
public:
PoolPluginDynamic() {}
PoolPluginDynamic(const bool& ceil_mode, const std::string& pool_type,
const bool& adaptive, const std::vector<int>& ksize,
const std::vector<int>& strides,
const std::vector<int>& paddings, const bool& is_global)
: ceil_mode_(ceil_mode),
pool_type_(pool_type),
adaptive_(adaptive),
ksize_(ksize),
strides_(strides),
paddings_(paddings),
is_global_(is_global) {}
PoolPluginDynamic(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &ceil_mode_);
const char* pool_type;
DeserializeValue(&serialData, &serialLength, &pool_type);
pool_type_ = std::string(pool_type);
DeserializeValue(&serialData, &serialLength, &adaptive_);
DeserializeValue(&serialData, &serialLength, &ksize_);
DeserializeValue(&serialData, &serialLength, &strides_);
DeserializeValue(&serialData, &serialLength, &paddings_);
DeserializeValue(&serialData, &serialLength, &is_global_);
}
~PoolPluginDynamic() {}
nvinfer1::IPluginV2DynamicExt* clone() const override {
return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, ksize_,
strides_, paddings_, is_global_);
}
const char* getPluginType() const override { return "pool_plugin"; }
int getNbOutputs() const override { return 1; }
int initialize() override { return 0; }
size_t getSerializationSize() const override;
void serialize(void* buffer) const override;
nvinfer1::DimsExprs getOutputDimensions(
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
nvinfer1::IExprBuilder& expr_builder) override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc* inOut,
int nbInputs, int nbOutputs) override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out,
int nbOutputs) override {}
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const override {
return 0;
}
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) override;
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType* inputTypes,
int nbInputs) const override;
void destroy() override { delete this; }
private:
bool ceil_mode_;
std::string pool_type_;
bool adaptive_;
std::vector<int> ksize_;
std::vector<int> strides_;
std::vector<int> paddings_;
bool is_global_;
};
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle