You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.3 KiB
186 lines
6.3 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdio.h>
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include "glog/logging.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
SwishPlugin *CreateSwishPluginDeserialize(const void *buffer, size_t length) {
|
|
return new SwishPlugin(buffer, length);
|
|
}
|
|
REGISTER_TRT_PLUGIN("swish_plugin", CreateSwishPluginDeserialize);
|
|
|
|
int SwishPlugin::initialize() { return 0; }
|
|
|
|
nvinfer1::Dims SwishPlugin::getOutputDimensions(int index,
|
|
const nvinfer1::Dims *inputDims,
|
|
int nbInputs) {
|
|
assert(nbInputs == 1);
|
|
assert(index < this->getNbOutputs());
|
|
nvinfer1::Dims const &input_dims = inputDims[0];
|
|
nvinfer1::Dims output_dims = input_dims;
|
|
return output_dims;
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ T math_exp(T a);
|
|
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
template <>
|
|
__device__ half math_exp<half>(half a) {
|
|
return hexp(a);
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
__device__ float math_exp<float>(float a) {
|
|
return expf(a);
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void swish_kernel(int num, const T *input, T *output, T beta) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (index < num) {
|
|
#if __CUDA_ARCH__ >= 350
|
|
output[index] =
|
|
__ldg(input + index) /
|
|
(static_cast<T>(1.0) + math_exp<T>(-beta * __ldg(input + index)));
|
|
#else
|
|
output[index] = input[index] /
|
|
(static_cast<T>(1.0) + math_exp<T>(-beta * input[index]));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int SwishPlugin::enqueue(int batch_size, const void *const *inputs,
|
|
void **outputs, void *workspace, cudaStream_t stream) {
|
|
// input dims is CHW.
|
|
const auto &input_dims = this->getInputDims(0);
|
|
const float *input = reinterpret_cast<const float *>(inputs[0]);
|
|
float *output = reinterpret_cast<float **>(outputs)[0];
|
|
int num = batch_size;
|
|
for (int i = 0; i < input_dims.nbDims; i++) {
|
|
num *= input_dims.d[i];
|
|
}
|
|
int threads = 1024;
|
|
int blocks = (num + threads - 1) / threads;
|
|
swish_kernel<<<blocks, threads, 0, stream>>>(num, input, output, beta_);
|
|
|
|
return cudaGetLastError() != cudaSuccess;
|
|
}
|
|
|
|
// Dynamic Plugin below.
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
|
|
int SwishPluginDynamic::initialize() {
|
|
setPluginNamespace("swish");
|
|
getPluginNamespace();
|
|
return 0;
|
|
}
|
|
|
|
size_t SwishPluginDynamic::getSerializationSize() const { return 0; }
|
|
|
|
void SwishPluginDynamic::serialize(void *buffer) const {}
|
|
|
|
nvinfer1::DimsExprs SwishPluginDynamic::getOutputDimensions(
|
|
int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
|
|
nvinfer1::IExprBuilder &expr_builder) {
|
|
return inputs[0];
|
|
}
|
|
|
|
bool SwishPluginDynamic::supportsFormatCombination(
|
|
int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
|
|
int nb_outputs) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
in_out, platform::errors::InvalidArgument(
|
|
"The input of swish plugin shoule not be nullptr."));
|
|
|
|
PADDLE_ENFORCE_LT(
|
|
pos, nb_inputs + nb_outputs,
|
|
platform::errors::InvalidArgument("The pos(%d) should be less than the "
|
|
"num(%d) of the input and the output.",
|
|
pos, nb_inputs + nb_outputs));
|
|
(in_out && pos < (nb_inputs + nb_outputs));
|
|
|
|
const nvinfer1::PluginTensorDesc &in = in_out[pos];
|
|
if (pos == 0) {
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
return (in.type == nvinfer1::DataType::kFLOAT ||
|
|
in.type == nvinfer1::DataType::kHALF) &&
|
|
(in.format == nvinfer1::TensorFormat::kLINEAR);
|
|
#else
|
|
return (in.type == nvinfer1::DataType::kFLOAT) &&
|
|
(in.format == nvinfer1::TensorFormat::kLINEAR);
|
|
#endif
|
|
}
|
|
const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
|
|
// output
|
|
return in.type == prev.type && in.format == prev.format;
|
|
}
|
|
|
|
nvinfer1::DataType SwishPluginDynamic::getOutputDataType(
|
|
int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
|
|
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
|
|
"The Swish Plugin only has one input, so the "
|
|
"index value should be 0, but get %d.",
|
|
index));
|
|
return input_types[0];
|
|
}
|
|
|
|
int SwishPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
|
|
const nvinfer1::PluginTensorDesc *output_desc,
|
|
const void *const *inputs, void *const *outputs,
|
|
void *workspace, cudaStream_t stream) {
|
|
auto input_dims = input_desc[0].dims;
|
|
size_t num = ProductDim(input_dims);
|
|
int threads = 1024;
|
|
int blocks = (num + threads - 1) / threads;
|
|
|
|
auto input_type = input_desc[0].type;
|
|
if (input_type == nvinfer1::DataType::kFLOAT) {
|
|
const float *input = static_cast<const float *>(inputs[0]);
|
|
float *output = static_cast<float *>(outputs[0]);
|
|
swish_kernel<float><<<blocks, threads, 0, stream>>>(num, input, output,
|
|
beta_);
|
|
} else if (input_type == nvinfer1::DataType::kHALF) {
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
const half *input = static_cast<const half *>(inputs[0]);
|
|
half *output = static_cast<half *>(outputs[0]);
|
|
swish_kernel<half><<<blocks, threads, 0, stream>>>(
|
|
num, input, output, static_cast<half>(beta_));
|
|
#else
|
|
PADDLE_THROW(platform::errors::Fatal(
|
|
"The cuda archs you specific should greater than 600."));
|
|
#endif
|
|
} else {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"The Swish TRT Plugin's input type should be float or half."));
|
|
}
|
|
return cudaGetLastError() != cudaSuccess;
|
|
}
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|