You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu

186 lines
6.3 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <cassert>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
SwishPlugin *CreateSwishPluginDeserialize(const void *buffer, size_t length) {
return new SwishPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("swish_plugin", CreateSwishPluginDeserialize);
int SwishPlugin::initialize() { return 0; }
nvinfer1::Dims SwishPlugin::getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) {
assert(nbInputs == 1);
assert(index < this->getNbOutputs());
nvinfer1::Dims const &input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
return output_dims;
}
template <typename T>
__device__ T math_exp(T a);
#ifdef SUPPORTS_CUDA_FP16
template <>
__device__ half math_exp<half>(half a) {
return hexp(a);
}
#endif
template <>
__device__ float math_exp<float>(float a) {
return expf(a);
}
template <typename T>
__global__ void swish_kernel(int num, const T *input, T *output, T beta) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < num) {
#if __CUDA_ARCH__ >= 350
output[index] =
__ldg(input + index) /
(static_cast<T>(1.0) + math_exp<T>(-beta * __ldg(input + index)));
#else
output[index] = input[index] /
(static_cast<T>(1.0) + math_exp<T>(-beta * input[index]));
#endif
}
}
int SwishPlugin::enqueue(int batch_size, const void *const *inputs,
void **outputs, void *workspace, cudaStream_t stream) {
// input dims is CHW.
const auto &input_dims = this->getInputDims(0);
const float *input = reinterpret_cast<const float *>(inputs[0]);
float *output = reinterpret_cast<float **>(outputs)[0];
int num = batch_size;
for (int i = 0; i < input_dims.nbDims; i++) {
num *= input_dims.d[i];
}
int threads = 1024;
int blocks = (num + threads - 1) / threads;
swish_kernel<<<blocks, threads, 0, stream>>>(num, input, output, beta_);
return cudaGetLastError() != cudaSuccess;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int SwishPluginDynamic::initialize() {
setPluginNamespace("swish");
getPluginNamespace();
return 0;
}
size_t SwishPluginDynamic::getSerializationSize() const { return 0; }
void SwishPluginDynamic::serialize(void *buffer) const {}
nvinfer1::DimsExprs SwishPluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
nvinfer1::IExprBuilder &expr_builder) {
return inputs[0];
}
bool SwishPluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
int nb_outputs) {
PADDLE_ENFORCE_NOT_NULL(
in_out, platform::errors::InvalidArgument(
"The input of swish plugin shoule not be nullptr."));
PADDLE_ENFORCE_LT(
pos, nb_inputs + nb_outputs,
platform::errors::InvalidArgument("The pos(%d) should be less than the "
"num(%d) of the input and the output.",
pos, nb_inputs + nb_outputs));
(in_out && pos < (nb_inputs + nb_outputs));
const nvinfer1::PluginTensorDesc &in = in_out[pos];
if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
return (in.type == nvinfer1::DataType::kFLOAT ||
in.type == nvinfer1::DataType::kHALF) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#else
return (in.type == nvinfer1::DataType::kFLOAT) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
}
const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
// output
return in.type == prev.type && in.format == prev.format;
}
nvinfer1::DataType SwishPluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
"The Swish Plugin only has one input, so the "
"index value should be 0, but get %d.",
index));
return input_types[0];
}
int SwishPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
const nvinfer1::PluginTensorDesc *output_desc,
const void *const *inputs, void *const *outputs,
void *workspace, cudaStream_t stream) {
auto input_dims = input_desc[0].dims;
size_t num = ProductDim(input_dims);
int threads = 1024;
int blocks = (num + threads - 1) / threads;
auto input_type = input_desc[0].type;
if (input_type == nvinfer1::DataType::kFLOAT) {
const float *input = static_cast<const float *>(inputs[0]);
float *output = static_cast<float *>(outputs[0]);
swish_kernel<float><<<blocks, threads, 0, stream>>>(num, input, output,
beta_);
} else if (input_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
const half *input = static_cast<const half *>(inputs[0]);
half *output = static_cast<half *>(outputs[0]);
swish_kernel<half><<<blocks, threads, 0, stream>>>(
num, input, output, static_cast<half>(beta_));
#else
PADDLE_THROW(platform::errors::Fatal(
"The cuda archs you specific should greater than 600."));
#endif
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"The Swish TRT Plugin's input type should be float or half."));
}
return cudaGetLastError() != cudaSuccess;
}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle