You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
6.4 KiB
203 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <time.h>
|
|
#include <thread> // NOLINT
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class SelectedRowsTester : public ::testing::Test {
|
|
public:
|
|
void SetUp() override {
|
|
std::vector<int64_t> rows{0, 4, 7};
|
|
int64_t height = 10;
|
|
int64_t row_numel = 100;
|
|
selected_rows_.reset(new SelectedRows(rows, height));
|
|
|
|
Tensor* value = selected_rows_->mutable_value();
|
|
auto* data = value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows.size()), row_numel}), place_);
|
|
for (int64_t i = 0; i < value->numel(); ++i) {
|
|
data[i] = static_cast<float>(i);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
platform::CPUPlace place_;
|
|
std::unique_ptr<SelectedRows> selected_rows_{nullptr};
|
|
};
|
|
|
|
TEST_F(SelectedRowsTester, height) { ASSERT_EQ(selected_rows_->height(), 10); }
|
|
|
|
TEST_F(SelectedRowsTester, dims) {
|
|
ASSERT_EQ(selected_rows_->value().dims(), make_ddim({3, 100}));
|
|
}
|
|
|
|
TEST_F(SelectedRowsTester, complete_dims) {
|
|
ASSERT_EQ(selected_rows_->GetCompleteDims(), make_ddim({10, 100}));
|
|
}
|
|
|
|
TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
|
|
SelectedRows dst_tensor;
|
|
platform::CPUDeviceContext cpu_ctx(place_);
|
|
std::ostringstream oss;
|
|
|
|
SerializeToStream(oss, *selected_rows_, cpu_ctx);
|
|
|
|
std::istringstream iss(oss.str());
|
|
DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
|
|
|
|
ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows());
|
|
ASSERT_EQ(selected_rows_->height(), dst_tensor.height());
|
|
ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims());
|
|
ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims());
|
|
auto* dst_data = dst_tensor.value().data<float>();
|
|
for (int64_t i = 0; i < dst_tensor.value().numel(); ++i) {
|
|
ASSERT_EQ(dst_data[i], static_cast<float>(i));
|
|
}
|
|
}
|
|
|
|
TEST(SelectedRows, SparseTable) {
|
|
platform::CPUPlace cpu;
|
|
SelectedRows table;
|
|
|
|
int64_t table_size = 100;
|
|
int64_t embedding_width = 8;
|
|
// initialize a sparse table
|
|
table.mutable_value()->Resize(
|
|
framework::make_ddim({table_size, embedding_width}));
|
|
auto* data = table.mutable_value()->mutable_data<float>(cpu);
|
|
for (int64_t i = 0; i < table_size; ++i) {
|
|
for (int64_t j = 0; j < embedding_width; ++j) {
|
|
data[i * embedding_width + j] = static_cast<float>(i);
|
|
}
|
|
}
|
|
ASSERT_EQ(table.AutoGrownIndex(10, true, false), 0);
|
|
ASSERT_EQ(table.AutoGrownIndex(8, true, false), 1);
|
|
ASSERT_EQ(table.AutoGrownIndex(8, true, false), 1);
|
|
ASSERT_EQ(table.AutoGrownIndex(6, true, false), 2);
|
|
for (int64_t i = 11; i < 20; i++) {
|
|
ASSERT_EQ(table.AutoGrownIndex(i, true, true), -1);
|
|
ASSERT_TRUE(!table.HasKey(i));
|
|
}
|
|
ASSERT_TRUE(table.HasKey(10));
|
|
ASSERT_TRUE(table.HasKey(8));
|
|
ASSERT_TRUE(table.HasKey(6));
|
|
ASSERT_EQ(table.rows().size(), 3UL);
|
|
|
|
framework::Tensor ids;
|
|
ids.Resize(framework::make_ddim({4}));
|
|
auto* ids_data = ids.mutable_data<int64_t>(cpu);
|
|
ids_data[0] = static_cast<int64_t>(6);
|
|
ids_data[1] = static_cast<int64_t>(6);
|
|
ids_data[2] = static_cast<int64_t>(8);
|
|
ids_data[3] = static_cast<int64_t>(10);
|
|
|
|
framework::Tensor get_value;
|
|
auto* value_data = get_value.mutable_data<float>(
|
|
framework::make_ddim({4, embedding_width}), cpu);
|
|
table.Get(ids, &get_value);
|
|
|
|
for (int j = 0; j < embedding_width; ++j) {
|
|
ASSERT_EQ(value_data[0 * embedding_width + j], 2);
|
|
}
|
|
for (int j = 0; j < embedding_width; ++j) {
|
|
ASSERT_EQ(value_data[1 * embedding_width + j], 2);
|
|
}
|
|
for (int j = 0; j < embedding_width; ++j) {
|
|
ASSERT_EQ(value_data[2 * embedding_width + j], 1);
|
|
}
|
|
for (int j = 0; j < embedding_width; ++j) {
|
|
ASSERT_EQ(value_data[3 * embedding_width + j], 0);
|
|
}
|
|
}
|
|
|
|
void f1(SelectedRows* table, int table_size) {
|
|
for (int i = 1000000; i > 0; --i) {
|
|
auto id = i % table_size;
|
|
int64_t index1 = table->AutoGrownIndex(id, true);
|
|
int64_t index2 = table->AutoGrownIndex(id, false);
|
|
int64_t index3 = table->AutoGrownIndex(id, true);
|
|
ASSERT_EQ(index1, index2);
|
|
ASSERT_EQ(index2, index3);
|
|
}
|
|
}
|
|
|
|
void f2(SelectedRows* table, int table_size) {
|
|
for (int i = 0; i < 1000000; ++i) {
|
|
auto id = i % table_size;
|
|
int64_t index1 = table->AutoGrownIndex(id, true);
|
|
int64_t index2 = table->AutoGrownIndex(id, false);
|
|
int64_t index3 = table->AutoGrownIndex(id, true);
|
|
ASSERT_EQ(index1, index2);
|
|
ASSERT_EQ(index2, index3);
|
|
}
|
|
}
|
|
|
|
void f3(SelectedRows* table, int table_size) {
|
|
clock_t t1 = clock();
|
|
for (int i = 100000; i > 0; --i) {
|
|
auto id1 = table->AutoGrownIndex(i % table_size, true);
|
|
auto id2 = table->Index(i % table_size);
|
|
ASSERT_EQ(id1, id2);
|
|
}
|
|
clock_t t2 = clock();
|
|
std::cout << "f3 run time:" << t2 - t1 << std::endl;
|
|
}
|
|
|
|
void f4(SelectedRows* table, int table_size) {
|
|
clock_t t1 = clock();
|
|
for (int i = 0; i < 100000; ++i) {
|
|
auto id1 = table->AutoGrownIndex(i % table_size, true);
|
|
auto id2 = table->Index(i % table_size);
|
|
ASSERT_EQ(id1, id2);
|
|
}
|
|
clock_t t2 = clock();
|
|
std::cout << "f4 run time:" << t2 - t1 << std::endl;
|
|
}
|
|
|
|
TEST(SelectedRows, MultiThreadAutoIndex) {
|
|
platform::CPUPlace cpu;
|
|
SelectedRows table;
|
|
|
|
int64_t table_size = 100000;
|
|
int64_t embedding_width = 8;
|
|
// initialize a sparse table
|
|
table.mutable_value()->Resize(
|
|
framework::make_ddim({table_size, embedding_width}));
|
|
auto* data = table.mutable_value()->mutable_data<float>(cpu);
|
|
for (int64_t i = 0; i < table_size; ++i) {
|
|
for (int64_t j = 0; j < embedding_width; ++j) {
|
|
data[i * embedding_width + j] = static_cast<float>(i);
|
|
}
|
|
}
|
|
|
|
std::thread t1(f1, &table, table_size);
|
|
std::thread t11(f1, &table, table_size);
|
|
std::thread t2(f2, &table, table_size);
|
|
std::thread t22(f2, &table, table_size);
|
|
t1.join();
|
|
t11.join();
|
|
t2.join();
|
|
t22.join();
|
|
std::thread t3(f3, &table, table_size);
|
|
std::thread t4(f4, &table, table_size);
|
|
t3.join();
|
|
t4.join();
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|