You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
16 KiB
392 lines
16 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/depthwise_conv.h"
|
|
#include "paddle/fluid/operators/math/im2col.h"
|
|
#include "paddle/fluid/operators/math/vol2col.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using DDim = framework::DDim;
|
|
|
|
// Define Op classes in .h file so that other conv transpose
|
|
// operator implementations can reuse the code.
|
|
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
class ConvTransposeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
};
|
|
|
|
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class GemmConvTransposeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
// The filter will be reshaped, so it should not be constant pointer
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
Tensor* output = context.Output<Tensor>("Output");
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
|
|
int groups = context.Attr<int>("groups");
|
|
|
|
const int batch_size = static_cast<int>(input->dims()[0]);
|
|
|
|
// input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
|
|
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
|
|
// filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
|
|
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
|
|
|
|
// use col_shape in the im2col and col2im (or vol2col and col2vol)
|
|
// calculation
|
|
// col_shape_vec: {c/g, k_h, k_w, h, w} or {c/g, k_d, k_h, k_w, d, h, w}
|
|
size_t data_dim = filter_shape_vec.size() - 2;
|
|
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
|
|
col_shape_vec[0] = output->dims()[1] / groups;
|
|
for (size_t j = 0; j < data_dim; ++j) {
|
|
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
|
|
col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
|
|
}
|
|
DDim col_shape(framework::make_ddim(col_shape_vec));
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
// size: (c/g * k_h * k_w, h * w) or (c/g * k_d * k_h * k_w, d * h * w)
|
|
DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
|
|
|
|
Tensor col;
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
// col_matrix shares the same piece of data with col,
|
|
// but will be reshaped into a two-dimensional matrix shape
|
|
// to call the matrix multiplication interface.
|
|
Tensor col_matrix;
|
|
col_matrix.ShareDataWith(col);
|
|
col_matrix.Resize(col_matrix_shape);
|
|
|
|
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
|
|
DDim output_shape =
|
|
framework::slice_ddim(output->dims(), 1, output->dims().size());
|
|
|
|
// input matrix size: (m, h * w) or (m, d * h * w)
|
|
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
|
|
|
|
// filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w)
|
|
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
|
|
filter.Resize(filter_matrix_shape);
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
set_zero(dev_ctx, output, static_cast<T>(0));
|
|
|
|
int in_step = static_cast<int>(input->dims()[1]) / groups;
|
|
int out_step = static_cast<int>(output->dims()[1]) / groups;
|
|
math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
|
|
math::Col2VolFunctor<DeviceContext, T> col2vol;
|
|
|
|
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
|
|
// on input)
|
|
for (int i = 0; i < batch_size; i++) {
|
|
// batch with size (m, h * w) or (m, d * h * w)
|
|
Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
|
|
|
|
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
|
|
Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);
|
|
|
|
for (int g = 0; g < groups; g++) {
|
|
Tensor in_slice = input_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor out_slice = output_batch.Slice(g * out_step, (g + 1) * out_step);
|
|
|
|
// col_matrix = filter_slice * input_slice
|
|
// of shape (c/g * k_h * k_w, h * w)
|
|
// or (c/g * k_d * k_h * k_w, d * h * w)
|
|
blas.MatMul(filter_slice, true, in_slice, false, static_cast<T>(1.0),
|
|
&col_matrix, static_cast<T>(0.0));
|
|
|
|
if (data_dim == 2U) {
|
|
// col2im: col_matrix -> dy
|
|
// from (c/g * k_h * k_w, h * w) to (c/g, o_h, o_w)
|
|
col2im(dev_ctx, col, dilations, strides,
|
|
std::vector<int>{paddings[0], paddings[1], paddings[0],
|
|
paddings[1]},
|
|
&out_slice);
|
|
} else if (data_dim == 3U) {
|
|
// col2vol: col_matrix -> dy
|
|
// from (c/g * k_d * k_h * k_w, d * h * w) to (c/g, o_d, o_h, o_w)
|
|
col2vol(dev_ctx, col, dilations, strides, paddings, &out_slice);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
const Tensor* output_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Output"));
|
|
// For filter, we do not use const pointer b/c we will do reshape,
|
|
// but we should avoid modifying its value.
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
Tensor* input_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
if ((!input_grad) && (!filter_grad)) return;
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
|
|
int groups = context.Attr<int>("groups");
|
|
|
|
const int batch_size = static_cast<int>(input->dims()[0]);
|
|
|
|
// input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
|
|
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
|
|
// filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
|
|
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
|
|
|
|
// use col_shape in the im2col and col2im (or vol2col and col2vol)
|
|
// calculation
|
|
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
|
|
size_t data_dim = filter_shape_vec.size() - 2;
|
|
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
|
|
col_shape_vec[0] = output_grad->dims()[1];
|
|
for (size_t j = 0; j < data_dim; ++j) {
|
|
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
|
|
col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
|
|
}
|
|
DDim col_shape(framework::make_ddim(col_shape_vec));
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
|
|
DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
|
|
|
|
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
|
|
DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
|
|
output_grad->dims().size());
|
|
|
|
// input matrix size: (m, h * w) or (m, d * h * w)
|
|
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
|
|
|
|
// filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w)
|
|
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0] / groups};
|
|
filter.Resize(filter_matrix_shape);
|
|
int in_step = static_cast<int>(input->dims()[1]) / groups;
|
|
int col_step = static_cast<int>(col_matrix_shape[0]) / groups;
|
|
|
|
// convolution transpose grad on input:
|
|
// im2col + gemm (similar to conv-forward)
|
|
// input need to compute gradient
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
if (input_grad || filter_grad) {
|
|
Tensor col;
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
// col_matrix shares the same piece of data with col,
|
|
// but will be reshaped into a two-dimensional matrix shape
|
|
// to call the matrix multiplication interface.
|
|
Tensor col_matrix;
|
|
col_matrix.ShareDataWith(col);
|
|
col_matrix.Resize(col_matrix_shape);
|
|
|
|
Tensor filter_grad_;
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
|
|
math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
|
|
math::Vol2ColFunctor<DeviceContext, T> vol2col;
|
|
|
|
if (input_grad) {
|
|
input_grad->mutable_data<T>(context.GetPlace());
|
|
}
|
|
if (filter_grad) { // filter size (m, c/g, k_h, k_w)
|
|
filter_grad->mutable_data<T>(context.GetPlace());
|
|
set_zero(dev_ctx, filter_grad, static_cast<T>(0));
|
|
filter_grad_ = *filter_grad;
|
|
filter_grad_.Resize(filter_matrix_shape);
|
|
}
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
// batch with size (c, o_h * o_w)
|
|
Tensor output_grad_batch =
|
|
output_grad->Slice(i, i + 1).Resize(output_shape);
|
|
|
|
if (data_dim == 2U) {
|
|
// im2col: dy -> col matrix
|
|
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
|
|
im2col(dev_ctx, output_grad_batch, dilations, strides,
|
|
std::vector<int>{paddings[0], paddings[1], paddings[0],
|
|
paddings[1]},
|
|
&col);
|
|
} else if (data_dim == 3U) {
|
|
// vol2col: dy -> col_matrix
|
|
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
|
|
vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings,
|
|
&col);
|
|
}
|
|
|
|
if (input_grad) {
|
|
// batch with size (m, h, w)
|
|
Tensor input_grad_batch =
|
|
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
|
|
// gemm: dx = filter * dy
|
|
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
|
|
// or
|
|
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
|
|
// d, h, w)
|
|
for (int g = 0; g < groups; g++) {
|
|
Tensor input_grad_slice =
|
|
input_grad_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor col_matrix_slice =
|
|
col_matrix.Slice(g * col_step, (g + 1) * col_step);
|
|
|
|
blas.MatMul(filter_slice, false, col_matrix_slice, false,
|
|
static_cast<T>(1.0), &input_grad_slice,
|
|
static_cast<T>(0.0));
|
|
}
|
|
}
|
|
if (filter_grad) {
|
|
// input batch
|
|
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
|
|
// gemm: d_filter = x * dy^T
|
|
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
|
|
// or
|
|
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
|
|
// k_h * k_w)
|
|
for (int g = 0; g < groups; g++) {
|
|
Tensor in_batch_slice =
|
|
in_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor filter_grad_slice =
|
|
filter_grad_.Slice(g * in_step, (g + 1) * in_step);
|
|
Tensor col_matrix_slice =
|
|
col_matrix.Slice(g * col_step, (g + 1) * col_step);
|
|
blas.MatMul(in_batch_slice, false, col_matrix_slice, true,
|
|
static_cast<T>(1.0), &filter_grad_slice,
|
|
static_cast<T>(1.0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
Tensor* output = context.Output<Tensor>("Output");
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
int groups = context.Attr<int>("groups");
|
|
PADDLE_ENFORCE_EQ(groups, filter.dims()[0]);
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
|
|
for (auto v : dilations) {
|
|
PADDLE_ENFORCE_EQ(v, 1);
|
|
}
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
set_zero(dev_ctx, output, static_cast<T>(0));
|
|
|
|
math::DepthwiseConvInputGradFunctor<DeviceContext, T>
|
|
depthwiseConvInputGrad;
|
|
depthwiseConvInputGrad(dev_ctx, *output, filter, *input, strides, paddings,
|
|
dilations, output);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
const Tensor* output_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Output"));
|
|
Tensor* input_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Filter"));
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
|
|
|
|
if (input_grad) {
|
|
math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;
|
|
depthwiseConv(dev_ctx, *output_grad, filter, strides, paddings, dilations,
|
|
input_grad);
|
|
}
|
|
|
|
if (filter_grad) {
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
filter_grad->mutable_data<T>(context.GetPlace());
|
|
set_zero(dev_ctx, filter_grad, static_cast<T>(0));
|
|
|
|
math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
|
|
depthwiseConvFilterGrad;
|
|
depthwiseConvFilterGrad(dev_ctx, *output_grad, *input, strides, paddings,
|
|
dilations, filter_grad);
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|