You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
5.5 KiB
140 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/cos_sim_functor.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CosSimKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
// get Tensor
|
|
auto* in_x = context.Input<framework::LoDTensor>("X");
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
auto* out_z = context.Output<framework::LoDTensor>("Out");
|
|
auto* out_x_norm = context.Output<Tensor>("XNorm");
|
|
auto* out_y_norm = context.Output<Tensor>("YNorm");
|
|
|
|
int rows_x = in_x->dims()[0];
|
|
int rows_y = in_y->dims()[0];
|
|
out_z->Resize({rows_x, 1});
|
|
out_x_norm->Resize({rows_x, 1});
|
|
out_y_norm->Resize({rows_y, 1});
|
|
out_z->mutable_data<T>(context.GetPlace());
|
|
out_x_norm->mutable_data<T>(context.GetPlace());
|
|
out_y_norm->mutable_data<T>(context.GetPlace());
|
|
out_z->set_lod(in_x->lod());
|
|
|
|
int cols = framework::product(in_x->dims()) / rows_x;
|
|
|
|
if (rows_x == rows_y) {
|
|
math::CosSimFunctor<T, true> functor(
|
|
in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
|
|
out_y_norm->data<T>(), out_z->data<T>(), cols);
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(context.device_context()), rows_x);
|
|
for_range(functor);
|
|
} else {
|
|
math::CosSimFunctor<T, false> functor(
|
|
in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
|
|
out_y_norm->data<T>(), out_z->data<T>(), cols);
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(context.device_context()), rows_x);
|
|
for_range(functor);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CosSimGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
// get Tensor
|
|
auto* in_x = context.Input<Tensor>("X");
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
auto* in_z = context.Input<Tensor>("Out");
|
|
auto* in_x_norm = context.Input<Tensor>("XNorm");
|
|
auto* in_y_norm = context.Input<Tensor>("YNorm");
|
|
auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
// compute gradident
|
|
int rows_x = in_x->dims()[0];
|
|
int rows_y = in_y->dims()[0];
|
|
int cols = framework::product(in_x->dims()) / rows_x;
|
|
|
|
if (rows_x == rows_y) {
|
|
if (out_grad_x) {
|
|
out_grad_x->Resize(in_x->dims());
|
|
math::CosSimGradFunctor<T> functor(
|
|
in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
|
|
in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
|
|
out_grad_x->mutable_data<T>(context.GetPlace()), cols);
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(context.device_context()),
|
|
rows_x);
|
|
for_range(functor);
|
|
}
|
|
if (out_grad_y) {
|
|
out_grad_y->Resize(in_y->dims());
|
|
math::CosSimGradFunctor<T> functor(
|
|
in_y_norm->data<T>(), in_x_norm->data<T>(), in_y->data<T>(),
|
|
in_x->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
|
|
out_grad_y->mutable_data<T>(context.GetPlace()), cols);
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(context.device_context()),
|
|
rows_x);
|
|
for_range(functor);
|
|
}
|
|
} else {
|
|
if (out_grad_x) {
|
|
out_grad_x->Resize(in_x->dims());
|
|
math::CosSimDxFunctor<T> functor(
|
|
in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
|
|
in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
|
|
out_grad_x->mutable_data<T>(context.GetPlace()), cols);
|
|
platform::ForRange<DeviceContext> for_range(
|
|
static_cast<const DeviceContext&>(context.device_context()),
|
|
rows_x);
|
|
for_range(functor);
|
|
}
|
|
if (out_grad_y) {
|
|
out_grad_y->Resize(in_y->dims());
|
|
out_grad_y->mutable_data<T>(context.GetPlace());
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
set_zero(dev_ctx, out_grad_y, static_cast<T>(0));
|
|
|
|
math::CosSimDyFunctor<DeviceContext, T> functor;
|
|
functor(dev_ctx, in_x_norm->data<T>(), in_y_norm->data<T>(),
|
|
in_x->data<T>(), in_y->data<T>(), in_z->data<T>(),
|
|
in_grad_z->data<T>(), static_cast<size_t>(rows_x),
|
|
static_cast<size_t>(cols), out_grad_y->data<T>());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|