You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
9.8 KiB
285 lines
9.8 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/strided_memcpy.h"
|
|
|
|
namespace paddle {
|
|
namespace operators { // Internal
|
|
|
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
|
using framework::Tensor;
|
|
|
|
inline std::vector<int> get_new_data(
|
|
const std::vector<const Tensor*>& list_new_tensor) {
|
|
// get tensor from
|
|
std::vector<int> vec_new_data;
|
|
for (size_t i = 0; i < list_new_tensor.size(); ++i) {
|
|
auto tensor = list_new_tensor[i];
|
|
PADDLE_ENFORCE_EQ(
|
|
tensor->dims(), framework::make_ddim({1}),
|
|
"The tensor's shape in list of Op(crop_tensor) should be [1].");
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
|
|
vec_new_data.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
|
|
} else {
|
|
vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
|
|
}
|
|
}
|
|
|
|
return vec_new_data;
|
|
}
|
|
|
|
static framework::DDim ValidateShape(const std::vector<int> shape,
|
|
const framework::DDim& in_dims) {
|
|
auto in_dim_size = in_dims.size();
|
|
auto shape_size = shape.size();
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dim_size, shape_size,
|
|
"Input(ShapeTensor)'s dimension size of Op(crop_tensor) should be equal "
|
|
"to that of input tensor. "
|
|
"Please check the Attr(shape)'s size of Op(fluid.layers.crop_tensor).");
|
|
const int64_t unk_dim_val = -1;
|
|
int unk_dim_idx = -1;
|
|
std::vector<int64_t> output_shape(shape.size(), 0);
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == unk_dim_val) {
|
|
PADDLE_ENFORCE_EQ(unk_dim_idx, -1,
|
|
"Only one element of shape can be unknown.");
|
|
PADDLE_ENFORCE_EQ(i, 0, "Only the first element of shape can be -1.");
|
|
unk_dim_idx = i;
|
|
} else {
|
|
PADDLE_ENFORCE_GT(shape[i], 0,
|
|
"Each element of shape must be greater than 0 "
|
|
"except the first element.");
|
|
}
|
|
output_shape[i] = static_cast<int64_t>(shape[i]);
|
|
}
|
|
|
|
return framework::make_ddim(output_shape);
|
|
}
|
|
|
|
static std::vector<int> GetShape(const framework::ExecutionContext& ctx) {
|
|
std::vector<int> res;
|
|
int rank = ctx.Input<Tensor>("X")->dims().size();
|
|
auto list_new_shape_tensor = ctx.MultiInput<framework::Tensor>("ShapeTensor");
|
|
if (list_new_shape_tensor.size() > 0) {
|
|
// have offsets tensor list
|
|
PADDLE_ENFORCE_EQ(list_new_shape_tensor.size(), rank,
|
|
"Input(ShapeTensor)'s length of Op(crop_tensor) should "
|
|
"be equal to dimension size of input tensor.");
|
|
res = get_new_data(list_new_shape_tensor);
|
|
|
|
return res;
|
|
}
|
|
|
|
auto* shape_tensor = ctx.HasInput("Shape")
|
|
? ctx.Input<framework::LoDTensor>("Shape")
|
|
: nullptr;
|
|
if (shape_tensor) {
|
|
auto* shape_data = shape_tensor->data<int>();
|
|
framework::Tensor cpu_shape_tensor;
|
|
if (platform::is_gpu_place(shape_tensor->place())) {
|
|
TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
|
|
shape_data = cpu_shape_tensor.data<int>();
|
|
}
|
|
res = std::vector<int>(shape_data, shape_data + shape_tensor->numel());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
|
|
std::vector<int> res;
|
|
int rank = ctx.Input<Tensor>("X")->dims().size();
|
|
auto list_new_offsets_tensor =
|
|
ctx.MultiInput<framework::Tensor>("OffsetsTensor");
|
|
if (list_new_offsets_tensor.size() > 0) {
|
|
// have offsets tensor list
|
|
res = get_new_data(list_new_offsets_tensor);
|
|
|
|
return res;
|
|
}
|
|
|
|
if (ctx.HasInput("Offsets")) {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx.Attr<std::vector<int>>("offsets").empty(), true,
|
|
"Input 'Offsets' and attribute 'offsets' should not be used "
|
|
"at the same time.");
|
|
const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
|
|
PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1);
|
|
PADDLE_ENFORCE_EQ(
|
|
rank, offsets_tensor->dims()[0],
|
|
"Offsets size should be equal to dimension size of input tensor.");
|
|
const int* offsets_data;
|
|
framework::Tensor cpu_tmp_tensor;
|
|
if (platform::is_cpu_place(offsets_tensor->place())) {
|
|
offsets_data = offsets_tensor->data<int>();
|
|
} else {
|
|
framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
|
|
&cpu_tmp_tensor);
|
|
offsets_data = cpu_tmp_tensor.data<int>();
|
|
}
|
|
res = std::vector<int>(offsets_data, offsets_data + rank);
|
|
} else {
|
|
res = ctx.Attr<std::vector<int>>("offsets");
|
|
PADDLE_ENFORCE_EQ(
|
|
rank, static_cast<int>(res.size()),
|
|
"Offsets size should be equal to dimension size of input tensor.");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, size_t D>
|
|
void CropTensorFunction(const framework::ExecutionContext& context) {
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* out = context.Output<Tensor>("Out");
|
|
auto x_dims = x->dims();
|
|
auto out_dims = out->dims();
|
|
|
|
// get shape from Input(ShapeTensor) of Input(Shape)
|
|
std::vector<int> shape = GetShape(context);
|
|
// out_dims setted by arrt(shape)
|
|
if (shape.size() == 0) {
|
|
for (size_t i = 0; i < out_dims.size(); ++i) {
|
|
shape.push_back(out_dims[i]);
|
|
}
|
|
}
|
|
out_dims = ValidateShape(shape, x->dims());
|
|
if (out_dims[0] == -1) {
|
|
out_dims[0] = x->dims()[0];
|
|
}
|
|
|
|
out->mutable_data<T>(out_dims, context.GetPlace());
|
|
auto x_stride = framework::stride(x->dims());
|
|
auto offsets = GetOffsets(context);
|
|
int64_t offset = 0;
|
|
for (size_t i = 0; i < offsets.size(); ++i) {
|
|
PADDLE_ENFORCE_LE(
|
|
offsets[i] + shape[i], x_dims[i],
|
|
"The sum of the Attr(offsets) and Attr(shape) of Op(crop_tensor) "
|
|
"should be less than or equal to corresponding input dimension size.");
|
|
offset += (x_stride[i] * offsets[i]);
|
|
}
|
|
|
|
auto x_tensor = EigenTensor<T, D>::From(*x);
|
|
auto out_tensor = EigenTensor<T, D>::From(*out);
|
|
Eigen::array<int, D> e_offsets;
|
|
Eigen::array<int, D> e_shape;
|
|
for (size_t i = 0; i < D; ++i) {
|
|
e_offsets[i] = offsets[i];
|
|
e_shape[i] = out->dims()[i];
|
|
}
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
out_tensor.device(place) = x_tensor.slice(e_offsets, e_shape);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CropTensorKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
int rank = context.Input<Tensor>("X")->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
CropTensorFunction<DeviceContext, T, 1>(context);
|
|
break;
|
|
case 2:
|
|
CropTensorFunction<DeviceContext, T, 2>(context);
|
|
break;
|
|
case 3:
|
|
CropTensorFunction<DeviceContext, T, 3>(context);
|
|
break;
|
|
case 4:
|
|
CropTensorFunction<DeviceContext, T, 4>(context);
|
|
break;
|
|
case 5:
|
|
CropTensorFunction<DeviceContext, T, 5>(context);
|
|
break;
|
|
case 6:
|
|
CropTensorFunction<DeviceContext, T, 6>(context);
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
"CropTensorOp only support tensors with no more than 6 "
|
|
"dimensions.");
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, size_t D>
|
|
void CropTensorGradFunction(const framework::ExecutionContext& context) {
|
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* x = context.Input<Tensor>("X");
|
|
if (d_x != nullptr) {
|
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
d_x->mutable_data<T>(x->dims(), context.GetPlace());
|
|
auto offsets = GetOffsets(context);
|
|
Eigen::array<std::pair<int, int>, D> paddings;
|
|
for (size_t i = 0; i < D; ++i) {
|
|
paddings[i].first = offsets[i];
|
|
paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
|
|
}
|
|
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
|
|
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
|
|
d_x_tensor.device(
|
|
*context.template device_context<DeviceContext>().eigen_device()) =
|
|
d_out_tensor.pad(paddings, 0);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CropTensorGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
size_t rank =
|
|
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
CropTensorGradFunction<DeviceContext, T, 1>(context);
|
|
break;
|
|
case 2:
|
|
CropTensorGradFunction<DeviceContext, T, 2>(context);
|
|
break;
|
|
case 3:
|
|
CropTensorGradFunction<DeviceContext, T, 3>(context);
|
|
break;
|
|
case 4:
|
|
CropTensorGradFunction<DeviceContext, T, 4>(context);
|
|
break;
|
|
case 5:
|
|
CropTensorGradFunction<DeviceContext, T, 5>(context);
|
|
break;
|
|
case 6:
|
|
CropTensorGradFunction<DeviceContext, T, 6>(context);
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
"CropTensorOp only support tensors with no more than 6 "
|
|
"dimensions.");
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|