You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
21 KiB
533 lines
21 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fake_quantize_op.h"
|
|
#include <string>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/operators/clip_op.h"
|
|
#include "paddle/fluid/platform/transform.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct Compare {
|
|
public:
|
|
bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx, const T* in,
|
|
const int num, T* out) {
|
|
*out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
|
|
}
|
|
};
|
|
|
|
template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;
|
|
|
|
template <typename T>
|
|
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx, const T* in,
|
|
const int num, const int channel, T* out) {
|
|
const int channel_size = num / channel;
|
|
for (int i = 0; i < channel; i++) {
|
|
auto* start = in + i * channel_size;
|
|
auto* end = in + (i + 1) * channel_size;
|
|
out[i] = std::abs(*(std::max_element(start, end, Compare<T>())));
|
|
}
|
|
}
|
|
};
|
|
|
|
template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;
|
|
|
|
template <typename T>
|
|
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx,
|
|
const framework::Tensor& in, const framework::Tensor& scale,
|
|
const int bin_cnt, framework::Tensor* out) {
|
|
T s = scale.data<T>()[0];
|
|
platform::Transform<platform::CPUDeviceContext> trans;
|
|
trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
|
|
out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
|
|
auto out_e = framework::EigenVector<T>::Flatten(*out);
|
|
out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
|
|
}
|
|
};
|
|
|
|
template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;
|
|
|
|
template <typename T>
|
|
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx,
|
|
const framework::Tensor& in, const framework::Tensor& scale,
|
|
const int bin_cnt, framework::Tensor* out) {
|
|
T s = scale.data<T>()[0];
|
|
platform::Transform<platform::CPUDeviceContext> trans;
|
|
trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
|
|
out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
|
|
auto out_e = framework::EigenVector<T>::Flatten(*out);
|
|
out_e.device(*ctx.eigen_device()) =
|
|
(s / bin_cnt) * (bin_cnt / s * out_e).round();
|
|
}
|
|
};
|
|
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
|
|
float>;
|
|
|
|
template <typename T>
|
|
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx,
|
|
const framework::Tensor& in, const framework::Tensor& scale,
|
|
const int bin_cnt, const int channel,
|
|
framework::Tensor* out) {
|
|
auto* scale_data = scale.data<T>();
|
|
auto* in_data = in.data<T>();
|
|
auto* out_data = out->mutable_data<T>(ctx.GetPlace());
|
|
const int channel_size = in.numel() / channel;
|
|
platform::Transform<platform::CPUDeviceContext> trans;
|
|
for (int i = 0; i < channel; i++) {
|
|
T s = scale_data[i];
|
|
auto* start = in_data + i * channel_size;
|
|
auto* end = in_data + (i + 1) * channel_size;
|
|
trans(ctx, start, end, out_data + i * channel_size,
|
|
ClipFunctor<T>(-s, s));
|
|
}
|
|
for (int i = 0; i < channel; i++) {
|
|
T s = scale_data[i];
|
|
framework::Tensor one_channel_out = out->Slice(i, i + 1);
|
|
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
|
|
out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
|
|
}
|
|
}
|
|
};
|
|
|
|
template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
|
|
float>;
|
|
|
|
template <typename T>
|
|
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx,
|
|
const framework::Tensor& cur_scale,
|
|
const framework::Tensor& last_scale,
|
|
const framework::Tensor& iter, const int window_size,
|
|
framework::Tensor* scales_arr, framework::Tensor* out_scale) {
|
|
T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
|
|
int64_t it = iter.data<int64_t>()[0];
|
|
int idx = it % window_size;
|
|
T removed = scale_arr[idx];
|
|
T cur = cur_scale.data<T>()[0];
|
|
scale_arr[idx] = cur;
|
|
|
|
T max = last_scale.data<T>()[0];
|
|
if (max < cur) {
|
|
max = cur;
|
|
} else if (fabs(removed - max) < 1e-6) {
|
|
int size = (it > window_size) ? window_size : it;
|
|
FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
|
|
&max);
|
|
}
|
|
out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
|
|
}
|
|
};
|
|
|
|
template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;
|
|
|
|
template <typename T>
|
|
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& ctx,
|
|
const framework::Tensor& in_accum,
|
|
const framework::Tensor& in_state, const T* cur_scale,
|
|
const float rate, framework::Tensor* out_state,
|
|
framework::Tensor* out_accum, framework::Tensor* out_scale) {
|
|
T accum = in_accum.data<T>()[0];
|
|
T state = in_state.data<T>()[0];
|
|
T scale = cur_scale[0];
|
|
|
|
state = rate * state + 1;
|
|
accum = rate * accum + scale;
|
|
scale = accum / state;
|
|
|
|
out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
|
|
out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
|
|
out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
|
|
}
|
|
};
|
|
|
|
template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
|
|
float>;
|
|
|
|
class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
FakeQuantizeAbsMaxOp(const std::string& type,
|
|
const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of FakeQuantizeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of FakeQuantizeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
|
|
"Output(Scale) of FakeQuantizeOp should not be null.");
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("OutScale", {1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input is float data type.");
|
|
AddOutput("Out",
|
|
"(Tensor) Output of quantized low level tensor, "
|
|
"but also saved as float data type.");
|
|
AddOutput("OutScale", "(Tensor) Current scale");
|
|
AddAttr<int>("bit_length", "(int, default 8)")
|
|
.SetDefault(8)
|
|
.AddCustomChecker([](const int& bit_length) {
|
|
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
|
|
"'bit_length' should be between 1 and 16.");
|
|
});
|
|
AddComment(R"DOC(
|
|
FakeQuantize operator
|
|
|
|
$$scale = max(abs(X))$$
|
|
$$range = 2^{bit_length - 1} - 1$$
|
|
$$Out = round(X/scale * range)$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of FakeChannelWiseQuantizeOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("Out"),
|
|
"Output(Out) of FakeChannelWiseQuantizeOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("OutScale"),
|
|
"Output(Scale) of FakeChannelWiseQuantizeOp should not be null.");
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[0]});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class FakeChannelWiseQuantizeAbsMaxOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input is float data type.");
|
|
AddOutput("Out",
|
|
"(Tensor) Output of quantized low level tensor, "
|
|
"but also saved as float data type.");
|
|
AddOutput("OutScale", "(Tensor) Current channel wise scale");
|
|
AddAttr<int>("bit_length", "(int, default 8)")
|
|
.SetDefault(8)
|
|
.AddCustomChecker([](const int& bit_length) {
|
|
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
|
|
"'bit_length' should be between 1 and 16.");
|
|
});
|
|
AddComment(R"DOC(
|
|
The scale of FakeChannelWiseQuantize operator is a vector.
|
|
In detail, each channel of the input X has a scale value.
|
|
|
|
$$scale_c = max(abs(X_c))$$
|
|
$$range = 2^{bit\_length - 1} - 1$$
|
|
$$Out_c = round(\frac{X_c * range} {scale_c})$$
|
|
In above three formulas, the range value of c is as follow:
|
|
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
FakeQuantizeRangeAbsMaxOp(const std::string& type,
|
|
const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of FakeQuantizeRangeAbsMaxOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("Out"),
|
|
"Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("OutScale"),
|
|
"Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null");
|
|
if (ctx->HasOutput("OutScales")) {
|
|
int window_size = ctx->Attrs().Get<int>("window_size");
|
|
ctx->SetOutputDim("OutScales", {window_size});
|
|
}
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("OutScale", {1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class FakeQuantizeRangeAbsMaxOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input is float data type.");
|
|
AddInput("InScale", "Last scale.");
|
|
AddInput("Iter", "Global step iteration.").AsDispensable();
|
|
AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
|
|
AddOutput("OutScale", " Current scale");
|
|
AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
|
|
AddAttr<int>("window_size", "(int, default 10000) window range size.")
|
|
.SetDefault(10000);
|
|
AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
|
|
.SetDefault(8)
|
|
.AddCustomChecker([](const int& bit_length) {
|
|
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
|
|
"'bit_length' should be between 1 and 16.");
|
|
});
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
FakeQuantize operator is used in static quantization.
|
|
|
|
$$scale = max(max(abs(x)), history_abs_max)$$
|
|
$$range = 2^{bit_length - 1} - 1$$
|
|
$$Out = round(X/scale * range)$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
|
|
: public framework::OperatorWithKernel {
|
|
public:
|
|
FakeQuantOrWithDequantMovingAverageAbsMaxOp(
|
|
const std::string& type, const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
|
|
"should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
|
|
"should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("OutScale"),
|
|
"Output(OutScale) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
|
|
"should not be null");
|
|
if (ctx->HasOutput("OutState")) {
|
|
ctx->SetOutputDim("OutState", {1});
|
|
}
|
|
if (ctx->HasOutput("OutAccum")) {
|
|
ctx->SetOutputDim("OutAccum", {1});
|
|
}
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("OutScale", {1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input is float data type.");
|
|
AddInput("InScale", "Last scale.");
|
|
AddInput("InAccum", "Last accum.").AsDispensable();
|
|
AddInput("InState", "Last state.").AsDispensable();
|
|
AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
|
|
AddOutput("OutScale", " Current scale");
|
|
AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
|
|
AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
|
|
AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
|
|
.SetDefault(0.9);
|
|
AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
|
|
.SetDefault(8)
|
|
.AddCustomChecker([](const int& bit_length) {
|
|
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
|
|
"'bit_length' should be between 1 and 16.");
|
|
});
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
This is a Base Op which support FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp
|
|
FakeQuantMovingAverageAbsMaxOp operator is used in static quantization.
|
|
|
|
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
|
|
$$range = 2^{bit\_length - 1} - 1$$
|
|
$$Out = round(X/scale * range)$$
|
|
|
|
FakeQuantDequantMovingAverageAbsMaxOp operator do the moving_average_abs_max op quant and then dequant.
|
|
|
|
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
|
|
$$range = 2^{bit\_length - 1} - 1$$
|
|
$$Out = round(X/scale * range) * scale / range$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput("X"),
|
|
"Input(X) of MovingAverageAbsMaxScaleOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("Out"),
|
|
"Output(Out) of MovingAverageAbsMaxScaleOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
|
|
"Output(OutScale) of MovingAverageAbsMaxScaleOp"
|
|
"should not be null");
|
|
if (ctx->HasOutput("OutState")) {
|
|
ctx->SetOutputDim("OutState", {1});
|
|
}
|
|
if (ctx->HasOutput("OutAccum")) {
|
|
ctx->SetOutputDim("OutAccum", {1});
|
|
}
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("OutScale", {1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class MovingAverageAbsMaxScaleOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input is float data type.");
|
|
AddInput("InAccum", "Last accum.").AsDispensable();
|
|
AddInput("InState", "Last state.").AsDispensable();
|
|
AddOutput("Out",
|
|
"(Tensor) Output tensor is just equivalent to the input tensor.");
|
|
AddOutput("OutScale", " Current scale");
|
|
AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
|
|
AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
|
|
AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
|
|
.SetDefault(0.9);
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set true for inference only and false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
|
|
And it will not quantize the input tensor.
|
|
|
|
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
|
|
$$Out = X$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CPU = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OPERATOR(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp,
|
|
ops::FakeQuantizeAbsMaxOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
|
|
ops::FakeQuantizeAbsMaxKernel<CPU, float>);
|
|
|
|
REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
|
|
ops::FakeQuantizeRangeAbsMaxOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
|
|
ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
|
|
|
|
REGISTER_OPERATOR(fake_quantize_moving_average_abs_max,
|
|
ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
|
|
ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
|
|
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
|
|
ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
|
|
|
|
REGISTER_OPERATOR(fake_quantize_dequantize_moving_average_abs_max,
|
|
ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
|
|
ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fake_quantize_dequantize_moving_average_abs_max,
|
|
ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);
|
|
|
|
REGISTER_OPERATOR(fake_channel_wise_quantize_abs_max,
|
|
ops::FakeChannelWiseQuantizeAbsMaxOp,
|
|
ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
|
|
ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
|
|
|
|
REGISTER_OPERATOR(moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
|
|
ops::MovingAverageAbsMaxScaleOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
|
|
ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
|