You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
6.3 KiB
162 lines
6.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fc_op.h"
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class FCOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
|
|
"X(Input) of Fully Connected should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
"Out(Output) of Fully Connected should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
|
|
"W(Input) of Fully Connected should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
if (bias_dims.size() == 2) {
|
|
PADDLE_ENFORCE_EQ(bias_dims[0], 1,
|
|
"The shape of Bias must be [1, dim].");
|
|
PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
|
|
"The shape of Bias must be [1, dim].");
|
|
} else if (bias_dims.size() == 1) {
|
|
PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
|
|
"The shape of Bias must be [1, dim].");
|
|
}
|
|
}
|
|
|
|
auto& activation_type = ctx->Attrs().Get<std::string>("activation_type");
|
|
if (!activation_type.empty()) {
|
|
PADDLE_ENFORCE_EQ(activation_type, "relu",
|
|
"Activation %s is not supportetd in fc now.",
|
|
activation_type.c_str());
|
|
}
|
|
if (ctx->Attrs().Get<bool>("use_mkldnn")) {
|
|
PADDLE_ENFORCE_EQ(in_dims.size() == 2 || in_dims.size() == 4, true,
|
|
"Fully Connected input should be 2-D or 4-D tensor.");
|
|
}
|
|
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
|
|
"Fully Connected input should be 2-D tensor.");
|
|
int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
|
|
PADDLE_ENFORCE_GT(
|
|
in_dims.size(), in_num_col_dims,
|
|
"The input tensor Input's rank of FCOp should be larger than "
|
|
"in_num_col_dims.");
|
|
|
|
std::vector<int64_t> output_dims;
|
|
FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims);
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
ctx->ShareLoD("Input", "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
if (ctx.Attr<bool>("use_mkldnn")) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
}
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.GetPlace(), layout, library);
|
|
}
|
|
};
|
|
|
|
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("W"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
|
|
}
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Bias")), true,
|
|
"Should have bias grad");
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
if (ctx.Attr<bool>("use_mkldnn")) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
}
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.GetPlace(), layout, library);
|
|
}
|
|
|
|
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input",
|
|
"(Tensor), The input tensor of fully connected operator.");
|
|
AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
|
|
AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of fully connected operator. ");
|
|
AddAttr<int>("in_num_col_dims",
|
|
"(int, default 1), The fc op can take tensors with more than "
|
|
"two dimensions as its inputs.")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddAttr<std::string>("activation_type",
|
|
"Activation type used in fully connected operator.")
|
|
.SetDefault("");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
|
|
"Skip calling InferShape() function in the runtime.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Fully Connected Operator.
|
|
|
|
The fully connected operation calculates the output based on the input, weights and bias.
|
|
The size of each dimension of the parameters checked in the infer-shape.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fc, ops::FCOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::FCOpKernel<paddle::platform::CPUDeviceContext, double>);
|