You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
5.7 KiB
184 lines
5.7 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/gather_nd_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class GatherNdOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
"Input(X) of GatherNdOp should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
|
|
"Input(Index) of GatherNdOp should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
"Output(Out) of GatherNdOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_dims_size = x_dims.size();
|
|
auto index_dims = ctx->GetInputDim("Index");
|
|
auto index_dims_size = index_dims.size();
|
|
|
|
PADDLE_ENFORCE_LE(
|
|
index_dims[index_dims_size - 1], x_dims_size,
|
|
"Input(Index).shape[-1] should be no greater than Input(X).rank");
|
|
PADDLE_ENFORCE_GE(index_dims_size, 2UL,
|
|
"The rank of Input(Index) should be greater than 1");
|
|
|
|
std::vector<int64_t> result_dims;
|
|
// The result dims is
|
|
// Index.shape[:-1] + X.shape[Index.shape[-1]:]
|
|
for (int i = 0; i < index_dims_size - 1; ++i) {
|
|
result_dims.emplace_back(index_dims[i]);
|
|
}
|
|
for (int i = index_dims[index_dims_size - 1]; i < x_dims_size; ++i) {
|
|
result_dims.emplace_back(x_dims[i]);
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(result_dims));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class GatherNdGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", /*-->*/ framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class GatherNdOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The source input of gather_nd op");
|
|
AddInput("Index", "The index input of gather_nd op");
|
|
AddOutput("Out", "The output of gather_nd op");
|
|
AddComment(R"DOC(
|
|
Gather_Nd Operator.
|
|
|
|
This function is actually a high-dimensional extension of gather
|
|
and supports for simultaneous indexing by multiple axes. Out is
|
|
obtained by gathering slices from X into a tensor with shape
|
|
Index.shape[:-1] + X.shape[Index.shape[-1]:].
|
|
|
|
Example:
|
|
|
|
Given:
|
|
X = [[[ 0, 1, 2, 3],
|
|
[ 4, 5, 6, 7],
|
|
[ 8, 9, 10, 11]],
|
|
[[12, 13, 14, 15],
|
|
[16, 17, 18, 19],
|
|
[20, 21, 22, 23]]]
|
|
|
|
X.shape = (2, 3, 4)
|
|
|
|
*Case 1:
|
|
|
|
Index = [[1]]
|
|
|
|
we get:
|
|
Out =
|
|
[[12, 13, 14, 15],
|
|
[16, 17, 18, 19],
|
|
[20, 21, 22, 23]]
|
|
|
|
*Case 2:
|
|
|
|
Index = [[0,2]]
|
|
|
|
we get:
|
|
|
|
Out = [8, 9, 10, 11]
|
|
|
|
*Case 3:
|
|
|
|
Index = [[1, 2, 3]]
|
|
|
|
we get:
|
|
|
|
Out = [23]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class GatherNdGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("gather_nd_grad");
|
|
op->SetInput("Index", Input("Index"));
|
|
op->SetInput("X", Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(GatherNdGradNoNeedBufferVarInference,
|
|
"X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(gather_nd, ops::GatherNdOp, ops::GatherNdOpMaker,
|
|
ops::GatherNdGradOpDescMaker);
|
|
|
|
REGISTER_OPERATOR(gather_nd_grad, ops::GatherNdGradOp,
|
|
ops::GatherNdGradNoNeedBufferVarInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(gather_nd, ops::GatherNdOpKernel<float>,
|
|
ops::GatherNdOpKernel<double>,
|
|
ops::GatherNdOpKernel<int64_t>,
|
|
ops::GatherNdOpKernel<int>,
|
|
ops::GatherNdOpKernel<uint8_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(gather_nd_grad, ops::GatherNdGradOpKernel<float>,
|
|
ops::GatherNdGradOpKernel<double>,
|
|
ops::GatherNdGradOpKernel<int64_t>,
|
|
ops::GatherNdGradOpKernel<int>,
|
|
ops::GatherNdGradOpKernel<uint8_t>);
|