You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.3 KiB
73 lines
2.3 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
extern "C" {
|
|
#include <xxhash.h>
|
|
}
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
inline void HashOutputSize(const framework::DDim& in_dims,
|
|
std::vector<int64_t>& out_dims, // NOLINT
|
|
int num_hash) {
|
|
out_dims.reserve(in_dims.size() + 1);
|
|
// copy all dims except the last one
|
|
for (int i = 0u; i != in_dims.size() - 1; ++i) {
|
|
out_dims.emplace_back(in_dims[i]);
|
|
}
|
|
out_dims.emplace_back(num_hash);
|
|
// keep the last dim to 1
|
|
out_dims.emplace_back(1);
|
|
}
|
|
|
|
template <typename T>
|
|
class HashKernel : public framework::OpKernel<T> {
|
|
public:
|
|
virtual void Compute(const framework::ExecutionContext& context) const {
|
|
auto* out_t = context.Output<framework::LoDTensor>("Out");
|
|
auto* in_t = context.Input<framework::LoDTensor>("X");
|
|
int64_t mod_by = context.Attr<int64_t>("mod_by");
|
|
int num_hash = context.Attr<int>("num_hash");
|
|
|
|
auto in_dims = in_t->dims();
|
|
|
|
std::vector<int64_t> out_dims;
|
|
HashOutputSize(in_dims, out_dims, num_hash);
|
|
out_t->Resize(framework::make_ddim(out_dims));
|
|
auto* output = out_t->mutable_data<T>(context.GetPlace());
|
|
|
|
auto seq_length = in_dims[0];
|
|
auto last_dim = in_dims[in_dims.size() - 1];
|
|
auto* input = in_t->data<T>();
|
|
for (int idx = 0; idx < seq_length; ++idx) {
|
|
for (int ihash = 0; ihash != num_hash; ++ihash) {
|
|
output[idx * num_hash + ihash] =
|
|
XXH64(input, sizeof(T) * last_dim, ihash) % mod_by;
|
|
}
|
|
input += last_dim;
|
|
}
|
|
|
|
out_t->set_lod(in_t->lod());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|