You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
965 lines
39 KiB
965 lines
39 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include "paddle/fluid/operators/interpolate_op.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
template <typename T>
|
|
__global__ void KeNearestNeighborInterpFw(
|
|
const T* in, const size_t in_img_h, const size_t in_img_w,
|
|
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
const size_t num_channels, const float ratio_h, const float ratio_w,
|
|
const bool align_corners, const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idy = out_id_w / (out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idy = (align_corners)
|
|
? static_cast<int>(ratio_h * out_img_idy + 0.5)
|
|
: static_cast<int>(ratio_h * out_img_idy);
|
|
int in_img_idx = (align_corners)
|
|
? static_cast<int>(ratio_w * out_img_idx + 0.5)
|
|
: static_cast<int>(ratio_w * out_img_idx);
|
|
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
out[tid] = in[out_id_h * input_w + channel_id * in_img_size +
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
} else {
|
|
out[tid] = in[out_id_h * input_w + in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void KeNearestNeighborInterpBw(
|
|
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
|
|
const size_t input_w, const T* out, const size_t out_img_h,
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
const size_t num_channels, const float ratio_h, const float ratio_w,
|
|
const bool align_corners, const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idy = out_id_w / (out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idy = (align_corners)
|
|
? static_cast<int>(ratio_h * out_img_idy + 0.5)
|
|
: static_cast<int>(ratio_h * out_img_idy);
|
|
int in_img_idx = (align_corners)
|
|
? static_cast<int>(ratio_w * out_img_idx + 0.5)
|
|
: static_cast<int>(ratio_w * out_img_idx);
|
|
|
|
T* in_pos;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
} else {
|
|
in_pos = &in[out_id_h * input_w + in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id];
|
|
}
|
|
const T out_pos = out[out_id_h * output_w + out_id_w];
|
|
platform::CudaAtomicAdd(in_pos, out_pos);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void KeBilinearInterpFw(
|
|
const T* in, const size_t in_img_h, const size_t in_img_w,
|
|
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
const size_t num_channels, const float ratio_h, const float ratio_w,
|
|
const bool align_corners, const int align_mode,
|
|
const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
bool align_flag = (align_mode == 0 && !align_corners);
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idy = out_id_w / (out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idy = align_flag
|
|
? static_cast<int>(ratio_h * (out_img_idy + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_h * out_img_idy);
|
|
in_img_idy = (in_img_idy > 0) ? in_img_idy : 0;
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
T src_h = ratio_h * (out_img_idy + 0.5) - 0.5;
|
|
src_h = (src_h > 0) ? src_h : 0;
|
|
T h1lambda =
|
|
align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy;
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
int in_img_idx = align_flag
|
|
? static_cast<int>(ratio_w * (out_img_idx + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_w * out_img_idx);
|
|
in_img_idx = (in_img_idx > 0) ? in_img_idx : 0;
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
T src_w = ratio_w * (out_img_idx + 0.5) - 0.5;
|
|
src_w = (src_w > 0) ? src_w : 0;
|
|
T w1lambda =
|
|
align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx;
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
|
|
// bilinear interpolation
|
|
out[out_id_h * output_w + out_id_w] =
|
|
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
|
|
h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
|
|
w1lambda * in_pos[h_id * in_img_w + w_id]);
|
|
} else {
|
|
const T* in_pos =
|
|
&in[out_id_h * input_w + in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id];
|
|
|
|
// bilinear interpolation
|
|
out[out_id_h * output_w + out_id_w] =
|
|
h2lambda *
|
|
(w2lambda * in_pos[0] + w1lambda * in_pos[w_id * num_channels]) +
|
|
h1lambda * (w2lambda * in_pos[h_id * in_img_w * num_channels] +
|
|
w1lambda * in_pos[h_id * in_img_w * num_channels +
|
|
w_id * num_channels]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void KeBilinearInterpBw(
|
|
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
|
|
const size_t input_w, const T* out, const size_t out_img_h,
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
const size_t num_channels, const T ratio_h, const T ratio_w,
|
|
const bool align_corners, const int align_mode,
|
|
const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
bool align_flag = (align_mode == 0 && !align_corners);
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idy = out_id_w / (out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idy = align_flag ? ratio_h * (out_img_idy + 0.5) - 0.5
|
|
: ratio_h * out_img_idy;
|
|
in_img_idy = (in_img_idy > 0) ? in_img_idy : 0;
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
T src_h = ratio_h * (out_img_idy + 0.5) - 0.5;
|
|
src_h = (src_h > 0) ? src_h : 0;
|
|
T h1lambda =
|
|
align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy;
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
int in_img_idx = align_flag ? ratio_w * (out_img_idx + 0.5) - 0.5
|
|
: ratio_w * out_img_idx;
|
|
in_img_idx = (in_img_idx > 0) ? in_img_idx : 0;
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
T src_w = ratio_w * (out_img_idx + 0.5) - 0.5;
|
|
src_w = (src_w > 0) ? src_w : 0;
|
|
T w1lambda =
|
|
align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx;
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
T* in_pos;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
} else {
|
|
in_pos = &in[out_id_h * input_w + in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id];
|
|
}
|
|
|
|
const T* out_pos = &out[out_id_h * output_w + out_id_w];
|
|
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
platform::CudaAtomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos[h_id * in_img_w],
|
|
h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos[h_id * in_img_w + w_id],
|
|
h1lambda * w1lambda * out_pos[0]);
|
|
} else {
|
|
platform::CudaAtomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos[w_id * num_channels],
|
|
h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos[h_id * in_img_w * num_channels],
|
|
h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(
|
|
&in_pos[h_id * in_img_w * num_channels + w_id * num_channels],
|
|
h1lambda * w1lambda * out_pos[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void KeTrilinearInterpFw(
|
|
const T* in, const size_t in_img_d, const size_t in_img_h,
|
|
const size_t in_img_w, const size_t input_h, const size_t input_w, T* out,
|
|
const size_t out_img_d, const size_t out_img_h, const size_t out_img_w,
|
|
const size_t output_h, const size_t output_w, const size_t num_channels,
|
|
const float ratio_d, const float ratio_h, const float ratio_w,
|
|
const bool align_corners, const int align_mode,
|
|
const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
bool align_flag = (align_mode == 0 && !align_corners);
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idt, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idt = (out_id_w % out_img_size) / out_img_h / out_img_w;
|
|
out_img_idy = ((out_id_w % out_img_size) / out_img_w) % out_img_h;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idt = out_id_w / (out_img_h * out_img_w * num_channels);
|
|
out_img_idy = out_id_w % (out_img_h * out_img_w * num_channels) /
|
|
(out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idt = align_flag
|
|
? static_cast<int>(ratio_d * (out_img_idt + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_d * out_img_idt);
|
|
in_img_idt = (in_img_idt > 0) ? in_img_idt : 0;
|
|
int d_id = (in_img_idt < in_img_d - 1) ? 1 : 0;
|
|
T src_d = ratio_d * (out_img_idt + 0.5) - 0.5;
|
|
src_d = (src_d > 0) ? src_d : 0;
|
|
T d1lambda =
|
|
align_flag ? src_d - in_img_idt : ratio_d * out_img_idt - in_img_idt;
|
|
T d2lambda = 1.f - d1lambda;
|
|
|
|
int in_img_idy = align_flag
|
|
? static_cast<int>(ratio_h * (out_img_idy + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_h * out_img_idy);
|
|
in_img_idy = (in_img_idy > 0) ? in_img_idy : 0;
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
T src_h = ratio_h * (out_img_idy + 0.5) - 0.5;
|
|
src_h = (src_h > 0) ? src_h : 0;
|
|
T h1lambda =
|
|
align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy;
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
int in_img_idx = align_flag
|
|
? static_cast<int>(ratio_w * (out_img_idx + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_w * out_img_idx);
|
|
in_img_idx = (in_img_idx > 0) ? in_img_idx : 0;
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
T src_w = ratio_w * (out_img_idx + 0.5) - 0.5;
|
|
src_w = (src_w > 0) ? src_w : 0;
|
|
T w1lambda =
|
|
align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx;
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
int in_pos1_idx = out_id_h * input_w + channel_id * in_img_size +
|
|
(in_img_idt * in_img_h + in_img_idy) * in_img_w +
|
|
in_img_idx;
|
|
const T* in_pos1 = &in[in_pos1_idx];
|
|
int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w;
|
|
const T* in_pos2 = &in[in_pos2_idx];
|
|
|
|
// trilinear interpolation
|
|
out[out_id_h * output_w + out_id_w] =
|
|
d2lambda *
|
|
(h2lambda * (w2lambda * in_pos1[0] + w1lambda * in_pos1[w_id]) +
|
|
h1lambda * (w2lambda * in_pos1[h_id * in_img_w] +
|
|
w1lambda * in_pos1[h_id * in_img_w + w_id])) +
|
|
d1lambda *
|
|
(h2lambda * (w2lambda * in_pos2[0] + w1lambda * in_pos2[w_id]) +
|
|
h1lambda * (w2lambda * in_pos2[h_id * in_img_w] +
|
|
w1lambda * in_pos2[h_id * in_img_w + w_id]));
|
|
|
|
} else {
|
|
int in_pos1_idx = out_id_h * input_w +
|
|
in_img_idt * in_img_h * in_img_w * num_channels +
|
|
in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id;
|
|
const T* in_pos1 = &in[in_pos1_idx];
|
|
int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w * num_channels;
|
|
const T* in_pos2 = &in[in_pos2_idx];
|
|
|
|
// trilinear interpolation
|
|
out[out_id_h * output_w + out_id_w] =
|
|
d2lambda *
|
|
(h2lambda * (w2lambda * in_pos1[0] +
|
|
w1lambda * in_pos1[w_id * num_channels]) +
|
|
h1lambda * (w2lambda * in_pos1[h_id * in_img_w * num_channels] +
|
|
w1lambda * in_pos1[h_id * in_img_w * num_channels +
|
|
w_id * num_channels])) +
|
|
d1lambda *
|
|
(h2lambda * (w2lambda * in_pos2[0] +
|
|
w1lambda * in_pos2[w_id * num_channels]) +
|
|
h1lambda * (w2lambda * in_pos2[h_id * in_img_w * num_channels] +
|
|
w1lambda * in_pos2[h_id * in_img_w * num_channels +
|
|
w_id * num_channels]));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void KeTrilinearInterpBw(
|
|
T* in, const size_t in_img_d, const size_t in_img_h, const size_t in_img_w,
|
|
const size_t input_h, const size_t input_w, const T* out,
|
|
const size_t out_img_d, const size_t out_img_h, const size_t out_img_w,
|
|
const size_t output_h, const size_t output_w, const size_t num_channels,
|
|
const T ratio_d, const T ratio_h, const T ratio_w, const bool align_corners,
|
|
const int align_mode, const DataLayout data_layout) {
|
|
int nthreads = output_h * output_w;
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int stride = blockDim.x * gridDim.x;
|
|
bool align_flag = (align_mode == 0 && !align_corners);
|
|
for (; tid < nthreads; tid += stride) {
|
|
int out_id_h = tid / output_w;
|
|
int out_id_w = tid % output_w;
|
|
int in_img_size = input_w / num_channels;
|
|
int out_img_size = output_w / num_channels;
|
|
|
|
int channel_id, out_img_idt, out_img_idy, out_img_idx;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
channel_id = out_id_w / out_img_size;
|
|
out_img_idt = (out_id_w % out_img_size) / out_img_h / out_img_w;
|
|
out_img_idy = ((out_id_w % out_img_size) / out_img_w) % out_img_h;
|
|
out_img_idx = tid % out_img_w;
|
|
} else {
|
|
out_img_idt = out_id_w / (out_img_h * out_img_w * num_channels);
|
|
out_img_idy = out_id_w % (out_img_h * out_img_w * num_channels) /
|
|
(out_img_w * num_channels);
|
|
out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels;
|
|
channel_id = tid % num_channels;
|
|
}
|
|
|
|
int in_img_idt = align_flag
|
|
? static_cast<int>(ratio_d * (out_img_idt + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_d * out_img_idt);
|
|
in_img_idt = (in_img_idt > 0) ? in_img_idt : 0;
|
|
int d_id = (in_img_idt < in_img_d - 1) ? 1 : 0;
|
|
T src_d = ratio_d * (out_img_idt + 0.5) - 0.5;
|
|
src_d = (src_d > 0) ? src_d : 0;
|
|
T d1lambda =
|
|
align_flag ? src_d - in_img_idt : ratio_d * out_img_idt - in_img_idt;
|
|
T d2lambda = 1.f - d1lambda;
|
|
|
|
int in_img_idy = align_flag
|
|
? static_cast<int>(ratio_h * (out_img_idy + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_h * out_img_idy);
|
|
in_img_idy = (in_img_idy > 0) ? in_img_idy : 0;
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
T src_h = ratio_h * (out_img_idy + 0.5) - 0.5;
|
|
src_h = (src_h > 0) ? src_h : 0;
|
|
T h1lambda =
|
|
align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy;
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
int in_img_idx = align_flag
|
|
? static_cast<int>(ratio_w * (out_img_idx + 0.5) - 0.5)
|
|
: static_cast<int>(ratio_w * out_img_idx);
|
|
in_img_idx = (in_img_idx > 0) ? in_img_idx : 0;
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
T src_w = ratio_w * (out_img_idx + 0.5) - 0.5;
|
|
src_w = (src_w > 0) ? src_w : 0;
|
|
T w1lambda =
|
|
align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx;
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
int in_pos1_idx = out_id_h * input_w + channel_id * in_img_size +
|
|
(in_img_idt * in_img_h + in_img_idy) * in_img_w +
|
|
in_img_idx;
|
|
T* in_pos1 = &in[in_pos1_idx];
|
|
int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w;
|
|
T* in_pos2 = &in[in_pos2_idx];
|
|
|
|
const T* out_pos = &out[out_id_h * output_w + out_id_w];
|
|
|
|
// trilinear interpolation grad
|
|
platform::CudaAtomicAdd(&in_pos1[0],
|
|
d2lambda * h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos1[w_id],
|
|
d2lambda * h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos1[h_id * in_img_w],
|
|
d2lambda * h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos1[h_id * in_img_w + w_id],
|
|
d2lambda * h1lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[0],
|
|
d1lambda * h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[w_id],
|
|
d1lambda * h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[h_id * in_img_w],
|
|
d1lambda * h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[h_id * in_img_w + w_id],
|
|
d1lambda * h1lambda * w1lambda * out_pos[0]);
|
|
} else {
|
|
int in_pos1_idx = out_id_h * input_w +
|
|
in_img_idt * in_img_h * in_img_w * num_channels +
|
|
in_img_idy * in_img_w * num_channels +
|
|
in_img_idx * num_channels + channel_id;
|
|
T* in_pos1 = &in[in_pos1_idx];
|
|
int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w * num_channels;
|
|
T* in_pos2 = &in[in_pos2_idx];
|
|
|
|
const T* out_pos = &out[out_id_h * output_w + out_id_w];
|
|
|
|
// trilinear interpolation grad
|
|
platform::CudaAtomicAdd(&in_pos1[0],
|
|
d2lambda * h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos1[w_id * num_channels],
|
|
d2lambda * h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos1[h_id * in_img_w * num_channels],
|
|
d2lambda * h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(
|
|
&in_pos1[h_id * in_img_w * num_channels + w_id * num_channels],
|
|
d2lambda * h1lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[0],
|
|
d1lambda * h2lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[w_id * num_channels],
|
|
d1lambda * h2lambda * w1lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(&in_pos2[h_id * in_img_w * num_channels],
|
|
d1lambda * h1lambda * w2lambda * out_pos[0]);
|
|
platform::CudaAtomicAdd(
|
|
&in_pos2[h_id * in_img_w * num_channels + w_id * num_channels],
|
|
d1lambda * h1lambda * w1lambda * out_pos[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void Interpolate2DCUDAFwd(const framework::ExecutionContext& ctx,
|
|
const Tensor& input, Tensor* output) {
|
|
auto* input_data = input.data<T>();
|
|
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
|
|
auto list_new_shape_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_shape_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape(list_new_shape_tensor);
|
|
out_h = new_size[0];
|
|
out_w = new_size[1];
|
|
} else {
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
Tensor sizes;
|
|
framework::TensorCopySync(*out_size, platform::CPUPlace(), &sizes);
|
|
auto size_data = sizes.data<int>();
|
|
out_h = size_data[0];
|
|
out_w = size_data[1];
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_GT(
|
|
out_h, 0,
|
|
"out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
|
|
PADDLE_ENFORCE_GT(
|
|
out_w, 0,
|
|
"out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
|
|
|
|
framework::DDim dim_out;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_out = {n, c, out_h, out_w};
|
|
} else {
|
|
dim_out = {n, out_h, out_w, c};
|
|
}
|
|
auto output_data = output->mutable_data<T>(dim_out, ctx.GetPlace());
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(input, ctx.GetPlace(), output);
|
|
return;
|
|
}
|
|
|
|
float ratio_h = 0.f;
|
|
float ratio_w = 0.f;
|
|
if (out_h > 1) {
|
|
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
|
|
: static_cast<float>(in_h) / out_h;
|
|
}
|
|
if (out_w > 1) {
|
|
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
|
|
: static_cast<float>(in_w) / out_w;
|
|
}
|
|
|
|
int in_hw = in_h * in_w;
|
|
int out_hw = out_h * out_w;
|
|
int in_chw = c * in_hw;
|
|
int out_chw = c * out_hw;
|
|
|
|
int pixelNum = n * out_chw;
|
|
int grid_dim = (pixelNum + 512 - 1) / 512;
|
|
grid_dim = grid_dim > 8 ? 8 : grid_dim;
|
|
|
|
if ("nearest" == interp_method) {
|
|
KeNearestNeighborInterpFw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_data, in_h, in_w, n, in_chw, output_data, out_h, out_w, n,
|
|
out_chw, c, ratio_h, ratio_w, align_corners, data_layout);
|
|
} else if ("bilinear" == interp_method) {
|
|
KeBilinearInterpFw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_data, in_h, in_w, n, in_chw, output_data, out_h, out_w, n,
|
|
out_chw, c, ratio_h, ratio_w, align_corners, align_mode, data_layout);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void Interpolate3DCUDAFwd(const framework::ExecutionContext& ctx,
|
|
const Tensor& input, Tensor* output) {
|
|
auto* input_data = input.data<T>();
|
|
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_d = ctx.Attr<int>("out_d");
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
|
|
auto list_new_shape_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_shape_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape(list_new_shape_tensor);
|
|
out_d = new_size[0];
|
|
out_h = new_size[1];
|
|
out_w = new_size[2];
|
|
} else {
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_d = static_cast<int>(in_d * scale);
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
Tensor sizes;
|
|
framework::TensorCopySync(*out_size, platform::CPUPlace(), &sizes);
|
|
auto size_data = sizes.data<int>();
|
|
out_d = size_data[0];
|
|
out_h = size_data[1];
|
|
out_w = size_data[2];
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_GT(
|
|
out_d, 0,
|
|
"out_d in Attr(out_shape) of Op(interpolate) should be greater than 0.");
|
|
PADDLE_ENFORCE_GT(
|
|
out_h, 0,
|
|
"out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
|
|
PADDLE_ENFORCE_GT(
|
|
out_w, 0,
|
|
"out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
|
|
|
|
framework::DDim dim_out;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_out = {n, c, out_d, out_h, out_w};
|
|
} else {
|
|
dim_out = {n, out_d, out_h, out_w, c};
|
|
}
|
|
auto output_data = output->mutable_data<T>(dim_out, ctx.GetPlace());
|
|
|
|
if (in_d == out_d && in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(input, ctx.GetPlace(), output);
|
|
return;
|
|
}
|
|
|
|
float ratio_d = 0.f;
|
|
float ratio_h = 0.f;
|
|
float ratio_w = 0.f;
|
|
if (out_d > 1) {
|
|
ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
|
|
: static_cast<float>(in_d) / out_d;
|
|
}
|
|
if (out_h > 1) {
|
|
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
|
|
: static_cast<float>(in_h) / out_h;
|
|
}
|
|
if (out_w > 1) {
|
|
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
|
|
: static_cast<float>(in_w) / out_w;
|
|
}
|
|
|
|
int in_dhw = in_d * in_h * in_w;
|
|
int out_dhw = out_d * out_h * out_w;
|
|
int in_cdhw = c * in_dhw;
|
|
int out_cdhw = c * out_dhw;
|
|
|
|
int pixelNum = n * out_cdhw;
|
|
int grid_dim = (pixelNum + 512 - 1) / 512;
|
|
grid_dim = grid_dim > 8 ? 8 : grid_dim;
|
|
|
|
if ("trilinear" == interp_method) {
|
|
KeTrilinearInterpFw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_data, in_d, in_h, in_w, n, in_cdhw, output_data, out_d, out_h,
|
|
out_w, n, out_cdhw, c, ratio_d, ratio_h, ratio_w, align_corners,
|
|
align_mode, data_layout);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void Interpolate2DCUDABwd(const framework::ExecutionContext& ctx,
|
|
Tensor* input_grad, const Tensor output_grad) {
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
Tensor sizes;
|
|
framework::TensorCopySync(*out_size, platform::CPUPlace(), &sizes);
|
|
auto size_data = sizes.data<int>();
|
|
out_h = size_data[0];
|
|
out_w = size_data[1];
|
|
}
|
|
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_size_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape(list_new_size_tensor);
|
|
out_h = new_size[0];
|
|
out_w = new_size[1];
|
|
}
|
|
|
|
auto* output_grad_data = output_grad.data<T>();
|
|
framework::DDim dim_grad;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_grad = {n, c, in_h, in_w};
|
|
} else {
|
|
dim_grad = {n, in_h, in_w, c};
|
|
}
|
|
input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
|
|
auto* input_grad_data = input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
|
|
auto& device_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
math::SetConstant<platform::CUDADeviceContext, T> zero;
|
|
zero(device_ctx, input_grad, static_cast<T>(0.0));
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
|
|
return;
|
|
}
|
|
|
|
float ratio_h = 0.f;
|
|
float ratio_w = 0.f;
|
|
if (out_h > 1) {
|
|
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
|
|
: static_cast<float>(in_h) / out_h;
|
|
}
|
|
if (out_w > 1) {
|
|
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
|
|
: static_cast<float>(in_w) / out_w;
|
|
}
|
|
|
|
int in_hw = in_h * in_w;
|
|
int out_hw = out_h * out_w;
|
|
int in_chw = c * in_hw;
|
|
int out_chw = c * out_hw;
|
|
|
|
int pixelNum = n * out_chw;
|
|
int grid_dim = (pixelNum + 512 - 1) / 512;
|
|
grid_dim = grid_dim > 8 ? 8 : grid_dim;
|
|
|
|
if ("nearest" == interp_method) {
|
|
KeNearestNeighborInterpBw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h, out_w,
|
|
n, out_chw, c, ratio_h, ratio_w, align_corners, data_layout);
|
|
} else if ("bilinear" == interp_method) {
|
|
KeBilinearInterpBw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h, out_w,
|
|
n, out_chw, c, ratio_h, ratio_w, align_corners, align_mode,
|
|
data_layout);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void Interpolate3DCUDABwd(const framework::ExecutionContext& ctx,
|
|
Tensor* input_grad,
|
|
const Tensor& output_grad) {
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_d = ctx.Attr<int>("out_d");
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_d = static_cast<int>(in_d * scale);
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
Tensor sizes;
|
|
framework::TensorCopySync(*out_size, platform::CPUPlace(), &sizes);
|
|
auto size_data = sizes.data<int>();
|
|
out_d = size_data[0];
|
|
out_h = size_data[1];
|
|
out_w = size_data[2];
|
|
}
|
|
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_size_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape(list_new_size_tensor);
|
|
out_d = new_size[0];
|
|
out_h = new_size[1];
|
|
out_w = new_size[2];
|
|
}
|
|
|
|
auto* output_grad_data = output_grad.data<T>();
|
|
framework::DDim dim_grad;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_grad = {n, c, in_d, in_h, in_w};
|
|
} else {
|
|
dim_grad = {n, in_d, in_h, in_w, c};
|
|
}
|
|
auto* input_grad_data = input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
|
|
auto& device_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
math::SetConstant<platform::CUDADeviceContext, T> zero;
|
|
zero(device_ctx, input_grad, static_cast<T>(0.0));
|
|
|
|
if (in_d == out_d && in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
|
|
return;
|
|
}
|
|
|
|
float ratio_d = 0.f;
|
|
float ratio_h = 0.f;
|
|
float ratio_w = 0.f;
|
|
if (out_d > 1) {
|
|
ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
|
|
: static_cast<float>(in_d) / out_d;
|
|
}
|
|
if (out_h > 1) {
|
|
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
|
|
: static_cast<float>(in_h) / out_h;
|
|
}
|
|
if (out_w > 1) {
|
|
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
|
|
: static_cast<float>(in_w) / out_w;
|
|
}
|
|
|
|
int in_dhw = in_d * in_h * in_w;
|
|
int out_dhw = out_d * out_h * out_w;
|
|
int in_cdhw = c * in_dhw;
|
|
int out_cdhw = c * out_dhw;
|
|
|
|
int pixelNum = n * out_cdhw;
|
|
int grid_dim = (pixelNum + 512 - 1) / 512;
|
|
grid_dim = grid_dim > 8 ? 8 : grid_dim;
|
|
|
|
if ("trilinear" == interp_method) {
|
|
KeTrilinearInterpBw<
|
|
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
|
|
input_grad_data, in_d, in_h, in_w, n, in_cdhw, output_grad_data, out_d,
|
|
out_h, out_w, n, out_cdhw, c, ratio_d, ratio_h, ratio_w, align_corners,
|
|
align_mode, data_layout);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"This kernel only runs on GPU device.");
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
|
|
auto input_dims = input->dims();
|
|
if (input_dims.size() == 4) { // 2D interpolation
|
|
Interpolate2DCUDAFwd<T>(ctx, *input, output);
|
|
} else if (input_dims.size() == 5) { // 3D interpolation
|
|
Interpolate3DCUDAFwd<T>(ctx, *input, output);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"This kernel only runs on GPU device.");
|
|
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto output_grad_dims = output_grad->dims();
|
|
if (output_grad_dims.size() == 4) { // 2D interpolation
|
|
Interpolate2DCUDABwd<T>(ctx, input_grad, *output_grad);
|
|
} else if (output_grad_dims.size() == 5) { // 3D interpolation
|
|
Interpolate3DCUDABwd<T>(ctx, input_grad, *output_grad);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(bilinear_interp, ops::InterpolateOpCUDAKernel<float>,
|
|
ops::InterpolateOpCUDAKernel<double>,
|
|
ops::InterpolateOpCUDAKernel<int>);
|
|
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
|
|
ops::InterpolateGradOpCUDAKernel<float>,
|
|
ops::InterpolateGradOpCUDAKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(nearest_interp, ops::InterpolateOpCUDAKernel<float>,
|
|
ops::InterpolateOpCUDAKernel<double>,
|
|
ops::InterpolateOpCUDAKernel<int>);
|
|
REGISTER_OP_CUDA_KERNEL(nearest_interp_grad,
|
|
ops::InterpolateGradOpCUDAKernel<float>,
|
|
ops::InterpolateGradOpCUDAKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(trilinear_interp, ops::InterpolateOpCUDAKernel<float>,
|
|
ops::InterpolateOpCUDAKernel<double>,
|
|
ops::InterpolateOpCUDAKernel<int>);
|
|
REGISTER_OP_CUDA_KERNEL(trilinear_interp_grad,
|
|
ops::InterpolateGradOpCUDAKernel<float>,
|
|
ops::InterpolateGradOpCUDAKernel<double>);
|