You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/interpolate_op.h

883 lines
33 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
inline std::vector<int> get_new_shape(
const std::vector<const Tensor*>& list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
"shape of dim tensor should be [1]");
if (platform::is_gpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
} else {
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
framework::Tensor cpu_starts_tensor;
if (platform::is_gpu_place(new_data_tensor->place())) {
TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
new_data = cpu_starts_tensor.data<T>();
}
vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
return vec_new_data;
}
inline void ExtractNCDWH(const framework::DDim& dims,
const DataLayout& data_layout, int* N, int* C, int* D,
int* H, int* W) {
*N = dims[0];
if (dims.size() == 4) {
*C = data_layout == DataLayout::kNCHW ? dims[1] : dims[3];
*D = 1;
*H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
*W = data_layout == DataLayout::kNCHW ? dims[3] : dims[2];
} else {
*C = data_layout == DataLayout::kNCHW ? dims[1] : dims[4];
*D = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
*H = data_layout == DataLayout::kNCHW ? dims[3] : dims[2];
*W = data_layout == DataLayout::kNCHW ? dims[4] : dims[3];
}
}
template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
const float ratio_h, const float ratio_w,
const int n, const int c,
const int out_h, const int out_w,
const bool align_corners,
const DataLayout& data_layout) {
auto input_t = EigenTensor<T, 4>::From(input);
auto output_t = EigenTensor<T, 4>::From(*output);
for (int k = 0; k < out_h; k++) { // loop for images
int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
: static_cast<int>(ratio_h * k);
for (int l = 0; l < out_w; l++) {
int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
: static_cast<int>(ratio_w * l);
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
if (data_layout == DataLayout::kNCHW) {
output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
} else {
output_t(i, k, l, j) = input_t(i, in_k, in_l, j);
}
}
}
}
}
}
template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
const float ratio_h, const float ratio_w,
const int in_h, const int in_w, const int n,
const int c, const int out_h, const int out_w,
const bool align_corners,
const bool align_mode,
const DataLayout data_layout) {
auto input_t = EigenTensor<T, 4>::From(input);
auto output_t = EigenTensor<T, 4>::From(*output);
bool align_flag = (align_mode == 0 && !align_corners);
std::vector<int> vy_n, vy_s;
std::vector<float> vd_n, vd_s;
vy_n.reserve(out_h);
vy_s.reserve(out_h);
vd_n.reserve(out_h);
vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int k = 0; k < out_h; k++) {
int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
: static_cast<int>(ratio_h * k);
y_n = (y_n > 0) ? y_n : 0;
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float idx_src_y = ratio_h * (k + 0.5) - 0.5;
idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
float d_s = 1.f - d_n;
{
vy_n[k] = y_n;
vy_s[k] = y_s;
vd_n[k] = d_n;
vd_s[k] = d_s;
}
}
std::vector<int> vx_w, vx_e;
std::vector<float> vd_w, vd_e;
vx_w.reserve(out_w);
vx_e.reserve(out_w);
vd_w.reserve(out_w);
vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int l = 0; l < out_w; l++) {
int x_w = (align_mode == 0 && !align_corners)
? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
: static_cast<int>(ratio_w * l);
x_w = (x_w > 0) ? x_w : 0;
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float idx_src_x = ratio_w * (l + 0.5) - 0.5;
idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
float d_e = 1.f - d_w;
{
vx_w[l] = x_w;
vx_e[l] = x_e;
vd_w[l] = d_w;
vd_e[l] = d_e;
}
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
for (int k = 0; k < out_h; k++) { // loop for images
for (int l = 0; l < out_w; l++) {
// bilinear interpolation
T out_t;
if (data_layout == DataLayout::kNCHW) {
out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
output_t(i, j, k, l) = out_t;
} else {
out_t = input_t(i, vy_n[k], vx_w[l], j) * vd_s[k] * vd_e[l] +
input_t(i, vy_s[k], vx_w[l], j) * vd_n[k] * vd_e[l] +
input_t(i, vy_n[k], vx_e[l], j) * vd_s[k] * vd_w[l] +
input_t(i, vy_s[k], vx_e[l], j) * vd_n[k] * vd_w[l];
output_t(i, k, l, j) = out_t;
}
}
}
}
}
}
template <typename T>
static void TrilinearInterpolation(
const Tensor& input, Tensor* output, const float ratio_d,
const float ratio_h, const float ratio_w, const int in_d, const int in_h,
const int in_w, const int n, const int c, const int out_d, const int out_h,
const int out_w, const bool align_corners, const bool align_mode,
const DataLayout& data_layout) {
auto input_t = EigenTensor<T, 5>::From(input);
auto output_t = EigenTensor<T, 5>::From(*output);
bool align_flag = (align_mode == 0 && !align_corners);
std::vector<int> vt_f, vt_b;
std::vector<float> vd_f, vd_b;
vt_f.reserve(out_d);
vt_b.reserve(out_d);
vd_f.reserve(out_d);
vd_b.reserve(out_d);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int j = 0; j < out_d; j++) {
int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
: static_cast<int>(ratio_d * j);
t_f = (t_f > 0) ? t_f : 0;
int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
float idx_src_t = ratio_d * (j + 0.5) - 0.5;
idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
float d_b = 1.f - d_f;
{
vt_f[j] = t_f;
vt_b[j] = t_b;
vd_f[j] = d_f;
vd_b[j] = d_b;
}
}
std::vector<int> vy_n, vy_s;
std::vector<float> vd_n, vd_s;
vy_n.reserve(out_h);
vy_s.reserve(out_h);
vd_n.reserve(out_h);
vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int k = 0; k < out_h; k++) {
int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
: static_cast<int>(ratio_h * k);
y_n = (y_n > 0) ? y_n : 0;
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float idx_src_y = ratio_h * (k + 0.5) - 0.5;
idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
float d_s = 1.f - d_n;
{
vy_n[k] = y_n;
vy_s[k] = y_s;
vd_n[k] = d_n;
vd_s[k] = d_s;
}
}
std::vector<int> vx_w, vx_e;
std::vector<float> vd_w, vd_e;
vx_w.reserve(out_w);
vx_e.reserve(out_w);
vd_w.reserve(out_w);
vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int l = 0; l < out_w; l++) {
int x_w = (align_mode == 0 && !align_corners)
? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
: static_cast<int>(ratio_w * l);
x_w = (x_w > 0) ? x_w : 0;
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float idx_src_x = ratio_w * (l + 0.5) - 0.5;
idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
float d_e = 1.f - d_w;
{
vx_w[l] = x_w;
vx_e[l] = x_e;
vd_w[l] = d_w;
vd_e[l] = d_e;
}
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(5)
#endif
for (int b = 0; b < n; b++) { // loop for batches
for (int i = 0; i < c; i++) { // loop for channels
for (int j = 0; j < out_d; j++) { // loop for D, H, W
for (int k = 0; k < out_h; k++) {
for (int l = 0; l < out_w; l++) {
// trilinear interpolation
if (data_layout == DataLayout::kNCHW) {
T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] *
vd_s[k] * vd_e[l] +
input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] *
vd_s[k] * vd_w[l] +
input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] *
vd_n[k] * vd_e[l] +
input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] *
vd_n[k] * vd_w[l] +
input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] *
vd_s[k] * vd_e[l] +
input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] *
vd_s[k] * vd_w[l] +
input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] *
vd_n[k] * vd_e[l] +
input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] *
vd_n[k] * vd_w[l];
output_t(b, i, j, k, l) = out_t;
} else {
T out_t = input_t(b, vt_f[j], vy_n[k], vx_w[l], i) * vd_b[j] *
vd_s[k] * vd_e[l] +
input_t(b, vt_f[j], vy_n[k], vx_e[l], i) * vd_b[j] *
vd_s[k] * vd_w[l] +
input_t(b, vt_f[j], vy_s[k], vx_w[l], i) * vd_b[j] *
vd_n[k] * vd_e[l] +
input_t(b, vt_f[j], vy_s[k], vx_e[l], i) * vd_b[j] *
vd_n[k] * vd_w[l] +
input_t(b, vt_b[j], vy_n[k], vx_w[l], i) * vd_f[j] *
vd_s[k] * vd_e[l] +
input_t(b, vt_b[j], vy_n[k], vx_e[l], i) * vd_f[j] *
vd_s[k] * vd_w[l] +
input_t(b, vt_b[j], vy_s[k], vx_w[l], i) * vd_f[j] *
vd_n[k] * vd_e[l] +
input_t(b, vt_b[j], vy_s[k], vx_e[l], i) * vd_f[j] *
vd_n[k] * vd_w[l];
output_t(b, j, k, l, i) = out_t;
}
}
}
}
}
}
}
template <typename T>
static void NearestNeighborInterpolateGrad(
const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
const float ratio_w, const int n, const int c, const int out_h,
const int out_w, const bool align_corners, const DataLayout data_layout) {
auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
for (int k = 0; k < out_h; k++) { // loop for images
int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
: static_cast<int>(ratio_h * k);
for (int l = 0; l < out_w; l++) {
int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
: static_cast<int>(ratio_w * l);
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
if (data_layout == DataLayout::kNCHW) {
input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
} else {
input_grad_t(i, in_k, in_l, j) += output_grad_t(i, k, l, j);
}
}
}
}
}
}
template <typename T>
static void BilinearInterpolationGrad(
const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
const float ratio_w, const int in_h, const int in_w, const int n,
const int c, const int out_h, const int out_w, const bool align_corners,
const int align_mode, const DataLayout data_layout) {
auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
bool align_flag = (align_mode == 0 && !align_corners);
for (int k = 0; k < out_h; k++) { // loop for images
int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
: static_cast<int>(ratio_h * k);
y_n = (y_n > 0) ? y_n : 0;
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float idx_src_y = ratio_h * (k + 0.5) - 0.5;
idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
float d_s = 1.f - d_n;
for (int l = 0; l < out_w; l++) {
int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
: static_cast<int>(ratio_w * l);
x_w = (x_w > 0) ? x_w : 0;
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float idx_src_x = ratio_w * (l + 0.5) - 0.5;
idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
float d_e = 1.f - d_w;
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
// bilinear interpolation grad
if (data_layout == DataLayout::kNCHW) {
const T grad = output_grad_t(i, j, k, l);
input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
} else {
const T grad = output_grad_t(i, k, l, j);
input_grad_t(i, y_n, x_w, j) += static_cast<T>(grad * d_s * d_e);
input_grad_t(i, y_s, x_w, j) += static_cast<T>(grad * d_n * d_e);
input_grad_t(i, y_n, x_e, j) += static_cast<T>(grad * d_s * d_w);
input_grad_t(i, y_s, x_e, j) += static_cast<T>(grad * d_n * d_w);
}
}
}
}
}
}
template <typename T>
static void TrilinearInterpolationGrad(
const Tensor& output_grad, Tensor* input_grad, const float ratio_d,
const float ratio_h, const float ratio_w, const int in_d, const int in_h,
const int in_w, const int n, const int c, const int out_d, const int out_h,
const int out_w, const bool align_corners, const int align_mode,
const DataLayout data_layout) {
auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 5>::From(output_grad);
bool align_flag = (align_mode == 0 && !align_corners);
for (int j = 0; j < out_d; j++) { // loop for D
int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
: static_cast<int>(ratio_d * j);
t_f = (t_f > 0) ? t_f : 0;
int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
float idx_src_t = ratio_d * (j + 0.5) - 0.5;
idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
float d_b = 1.f - d_f;
for (int k = 0; k < out_h; k++) { // loop for H
int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
: static_cast<int>(ratio_h * k);
y_n = (y_n > 0) ? y_n : 0;
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float idx_src_y = ratio_h * (k + 0.5) - 0.5;
idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
float d_s = 1.f - d_n;
for (int l = 0; l < out_w; l++) { // loop for W
int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
: static_cast<int>(ratio_w * l);
x_w = (x_w > 0) ? x_w : 0;
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float idx_src_x = ratio_w * (l + 0.5) - 0.5;
idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
float d_e = 1.f - d_w;
for (int b = 0; b < n; b++) { // loop for batches
for (int i = 0; i < c; i++) { // loop for channels
// trilinear interpolation grad
if (data_layout == DataLayout::kNCHW) {
const T grad = output_grad_t(b, i, j, k, l);
input_grad_t(b, i, t_f, y_n, x_w) +=
static_cast<T>(grad * d_b * d_s * d_e);
input_grad_t(b, i, t_f, y_n, x_e) +=
static_cast<T>(grad * d_b * d_s * d_w);
input_grad_t(b, i, t_f, y_s, x_w) +=
static_cast<T>(grad * d_b * d_n * d_e);
input_grad_t(b, i, t_f, y_s, x_e) +=
static_cast<T>(grad * d_b * d_n * d_w);
input_grad_t(b, i, t_b, y_n, x_w) +=
static_cast<T>(grad * d_f * d_s * d_e);
input_grad_t(b, i, t_b, y_n, x_e) +=
static_cast<T>(grad * d_f * d_s * d_w);
input_grad_t(b, i, t_b, y_s, x_w) +=
static_cast<T>(grad * d_f * d_n * d_e);
input_grad_t(b, i, t_b, y_s, x_e) +=
static_cast<T>(grad * d_f * d_n * d_w);
} else {
const T grad = output_grad_t(b, j, k, l, i);
input_grad_t(b, t_f, y_n, x_w, i) +=
static_cast<T>(grad * d_b * d_s * d_e);
input_grad_t(b, t_f, y_n, x_e, i) +=
static_cast<T>(grad * d_b * d_s * d_w);
input_grad_t(b, t_f, y_s, x_w, i) +=
static_cast<T>(grad * d_b * d_n * d_e);
input_grad_t(b, t_f, y_s, x_e, i) +=
static_cast<T>(grad * d_b * d_n * d_w);
input_grad_t(b, t_b, y_n, x_w, i) +=
static_cast<T>(grad * d_f * d_s * d_e);
input_grad_t(b, t_b, y_n, x_e, i) +=
static_cast<T>(grad * d_f * d_s * d_w);
input_grad_t(b, t_b, y_s, x_w, i) +=
static_cast<T>(grad * d_f * d_n * d_e);
input_grad_t(b, t_b, y_s, x_e, i) +=
static_cast<T>(grad * d_f * d_n * d_w);
}
}
}
}
}
}
}
template <typename T>
static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
const Tensor& input, Tensor* output) {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_size_tensor);
out_h = new_size[0];
out_w = new_size[1];
} else {
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_h = out_size_data[0];
out_w = out_size_data[1];
}
}
PADDLE_ENFORCE_GT(
out_h, 0,
"out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
PADDLE_ENFORCE_GT(
out_w, 0,
"out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
framework::DDim dim_out;
if (data_layout == DataLayout::kNCHW) {
dim_out = {n, c, out_h, out_w};
} else {
dim_out = {n, out_h, out_w, c};
}
output->mutable_data<T>(dim_out, ctx.GetPlace());
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(input, ctx.GetPlace(), output);
return;
}
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
if ("bilinear" == interp_method) {
BilinearInterpolation<T>(input, output, ratio_h, ratio_w, in_h, in_w, n, c,
out_h, out_w, align_corners, align_mode,
data_layout);
} else if ("nearest" == interp_method) {
NearestNeighborInterpolate<T>(input, output, ratio_h, ratio_w, n, c, out_h,
out_w, align_corners, data_layout);
}
}
template <typename T>
static void Interpolate3DCPUFwd(const framework::ExecutionContext& ctx,
const Tensor& input, Tensor* output) {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_d = ctx.Attr<int>("out_d");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_size_tensor);
out_d = new_size[0];
out_h = new_size[1];
out_w = new_size[2];
} else {
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_d = static_cast<int>(in_d * scale);
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_d = out_size_data[0];
out_h = out_size_data[1];
out_w = out_size_data[2];
}
}
PADDLE_ENFORCE_GT(
out_d, 0,
"out_d in Attr(out_shape) of Op(interpolate) should be greater than 0.");
PADDLE_ENFORCE_GT(
out_h, 0,
"out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
PADDLE_ENFORCE_GT(
out_w, 0,
"out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
framework::DDim dim_out;
if (data_layout == DataLayout::kNCHW) {
dim_out = {n, c, out_d, out_h, out_w};
} else {
dim_out = {n, out_d, out_h, out_w, c};
}
output->mutable_data<T>(dim_out, ctx.GetPlace());
if (in_d == out_d && in_h == out_h && in_w == out_w) {
framework::TensorCopy(input, ctx.GetPlace(), output);
return;
}
float ratio_d = 0.f;
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_d > 1) {
ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
: static_cast<float>(in_d) / out_d;
}
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
if ("trilinear" == interp_method) {
TrilinearInterpolation<T>(input, output, ratio_d, ratio_h, ratio_w, in_d,
in_h, in_w, n, c, out_d, out_h, out_w,
align_corners, align_mode, data_layout);
}
}
template <typename T>
static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
Tensor* input_grad, const Tensor& output_grad) {
auto* input = ctx.Input<Tensor>("X");
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_h = out_size_data[0];
out_w = out_size_data[1];
}
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_size_tensor);
out_h = new_size[0];
out_w = new_size[1];
}
framework::DDim dim_grad;
if (data_layout == DataLayout::kNCHW) {
dim_grad = {n, c, in_h, in_w};
} else {
dim_grad = {n, in_h, in_w, c};
}
input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, input_grad, static_cast<T>(0.0));
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
return;
}
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
if ("bilinear" == interp_method) {
BilinearInterpolationGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
in_h, in_w, n, c, out_h, out_w, align_corners,
align_mode, data_layout);
} else if ("nearest" == interp_method) {
NearestNeighborInterpolateGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
n, c, out_h, out_w, align_corners,
data_layout);
}
}
template <typename T>
static void Interpolate3DCPUBwd(const framework::ExecutionContext& ctx,
Tensor* input_grad, const Tensor output_grad) {
auto* input = ctx.Input<Tensor>("X");
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_d = ctx.Attr<int>("out_d");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_d = static_cast<int>(in_d * scale);
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_d = out_size_data[0];
out_h = out_size_data[1];
out_w = out_size_data[2];
}
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_size_tensor);
out_d = new_size[0];
out_h = new_size[1];
out_w = new_size[2];
}
framework::DDim dim_grad;
if (data_layout == DataLayout::kNCHW) {
dim_grad = {n, c, in_d, in_h, in_w};
} else {
dim_grad = {n, in_d, in_h, in_w, c};
}
input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, input_grad, static_cast<T>(0.0));
if (in_d == out_d && in_h == out_h && in_w == out_w) {
framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
return;
}
float ratio_d = 0.f;
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_d > 1) {
ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
: static_cast<float>(in_d) / out_d;
}
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
if ("trilinear" == interp_method) {
TrilinearInterpolationGrad<T>(
output_grad, input_grad, ratio_d, ratio_h, ratio_w, in_d, in_h, in_w, n,
c, out_d, out_h, out_w, align_corners, align_mode, data_layout);
}
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto input_dims = input->dims();
if (input_dims.size() == 4) { // 2D interpolation
Interpolate2DCPUFwd<T>(ctx, *input, output);
} else if (input_dims.size() == 5) { // 3D interpolation
Interpolate3DCPUFwd<T>(ctx, *input, output);
}
}
};
template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto output_grad_dims = output_grad->dims();
if (output_grad_dims.size() == 4) { // 2D interpolation grad
Interpolate2DCPUBwd<T>(ctx, input_grad, *output_grad);
} else if (output_grad_dims.size() == 5) { // 3D interpolation grad
Interpolate3DCPUBwd<T>(ctx, input_grad, *output_grad);
}
}
};
} // namespace operators
} // namespace paddle