You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.7 KiB
144 lines
5.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/label_smooth_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LabelSmoothOp : public framework::OperatorWithKernel {
|
|
public:
|
|
LabelSmoothOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of LabelSmoothOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of LabelSmoothOp should not be null.");
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
if (ctx->HasInput("PriorDist")) {
|
|
auto noise_dims = ctx->GetInputDim("PriorDist");
|
|
auto noise_numel = paddle::framework::product(noise_dims);
|
|
PADDLE_ENFORCE(
|
|
in_dims[1] == noise_numel,
|
|
"The number of elements in Input(PriorDist) must be equal to the "
|
|
"dimension of each label.");
|
|
}
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
ctx->SetOutputDim("Out", in_dims);
|
|
}
|
|
};
|
|
|
|
class LabelSmoothOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor) The input labels of LabelSmooth operator. This "
|
|
"input can be batched labels in one-hot encoding or output from "
|
|
"softmax, with shape [N x K], where N is the batch size and K is "
|
|
"the number of classes");
|
|
AddInput("PriorDist",
|
|
"(Tensor, optional)"
|
|
"The prior distribution to be added to the smoothed label. It is "
|
|
"fixed during training and the number of elements should be equal "
|
|
"to the dimension K of each label. Default is uniform "
|
|
"distribution and each element will be set to 1/K if not provided "
|
|
"in input.")
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"(loDTensor) The smoothed label of LabelSmooth operator. It has"
|
|
"the same shape and LoD with the Input(LoDTensor).");
|
|
AddAttr<float>("epsilon",
|
|
"(float, default 0.0f)"
|
|
"The smoothing parameter of LabelSmooth operator.")
|
|
.SetDefault(0.0f);
|
|
AddComment(R"DOC(
|
|
LabelSmooth Operator.
|
|
|
|
Label smoothing is a mechanism to regularize the classifier layer. In machine
|
|
learning, optimizing the log-likelihood of the correct label directly may
|
|
cause two problems. First, it may result in overfitting: if the model learns
|
|
to assign full probability to the ground-truth label for each training example,
|
|
it is not guaranteed to generalize. Second, it encourages the differences
|
|
between the largest logit and all others to become large, reducing the ability
|
|
of the model to adapt. Label smoothing is proposed to encourage the model to
|
|
be less confident, which replaces the ground-truth label $y$ with the weighted
|
|
sum of itself and some fixed distribution $\mu$, i.e.
|
|
|
|
$$
|
|
\tilde{y} = (1 - \epsilon) * y + \epsilon * \mu,
|
|
$$
|
|
|
|
where $(1 - \epsilon)$ and $\epsilon$ are the weights respectively, and
|
|
$\tilde{y}$ is the smoothed label. Usually uniform distribution is used for
|
|
$\mu$. This change in the ground-truth label is called label-smoothing
|
|
regularization or LSR.
|
|
|
|
See more details about label smoothing in https://arxiv.org/abs/1512.00567.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LabelSmoothGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
LabelSmoothGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
ctx->SetOutputDim(framework::GradVarName("X"),
|
|
ctx->GetInputDim(framework::GradVarName("Out")));
|
|
}
|
|
};
|
|
|
|
class LabelSmoothGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("label_smooth_grad");
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(label_smooth, ops::LabelSmoothOp, ops::LabelSmoothOpMaker,
|
|
ops::LabelSmoothGradDescMaker);
|
|
REGISTER_OPERATOR(label_smooth_grad, ops::LabelSmoothGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
label_smooth,
|
|
ops::LabelSmoothKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LabelSmoothKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
label_smooth_grad,
|
|
ops::LabelSmoothGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LabelSmoothGradKernel<paddle::platform::CPUDeviceContext, double>);
|