You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
12 KiB
350 lines
12 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
|
|
!defined(__OSX__)
|
|
#include "paddle/fluid/operators/jit/kernels.h"
|
|
#endif
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// Wrap RowwiseMean and ColwiseMean.
|
|
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
|
|
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
|
|
// implementation only considers 2D.
|
|
template <typename DeviceContext, typename T>
|
|
struct RowwiseMean2D {
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);
|
|
|
|
void operator()(const platform::DeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* vec);
|
|
};
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
template <typename T>
|
|
class RowwiseMean2D<platform::CUDADeviceContext, T> {
|
|
public:
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
|
|
: left_(left), right_(right) {
|
|
framework::DDim ones_dim({right_});
|
|
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
|
|
math::set_constant(dev_ctx, &divisor_, 1.0 / right);
|
|
}
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
|
|
false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
|
|
out->data<T>());
|
|
}
|
|
|
|
private:
|
|
int left_;
|
|
int right_;
|
|
framework::Tensor divisor_;
|
|
};
|
|
#endif
|
|
|
|
template <typename T>
|
|
class RowwiseMean2D<platform::CPUDeviceContext, T> {
|
|
public:
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
|
|
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
row_mean_(context, input, out);
|
|
}
|
|
|
|
private:
|
|
math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
struct ColwiseSum2D {
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);
|
|
|
|
void operator()(const platform::DeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* vec);
|
|
};
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
template <typename T>
|
|
class ColwiseSum2D<platform::CUDADeviceContext, T> {
|
|
public:
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
|
|
: left_(left), right_(right) {
|
|
framework::DDim ones_dim({left_});
|
|
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
|
|
math::set_constant(dev_ctx, &divisor_, 1.0);
|
|
}
|
|
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
|
|
true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
|
|
out->data<T>());
|
|
}
|
|
|
|
private:
|
|
int left_;
|
|
int right_;
|
|
framework::Tensor divisor_;
|
|
};
|
|
#endif
|
|
|
|
template <typename T>
|
|
class ColwiseSum2D<platform::CPUDeviceContext, T> {
|
|
public:
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
|
|
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
col_wise_(context, input, out);
|
|
}
|
|
|
|
private:
|
|
math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct SubAndSquareFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct DivAndSqrtFunctor {
|
|
explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
|
|
inline HOSTDEVICE T operator()(T a, T b) const {
|
|
return a / (sqrt(b + epsilon_));
|
|
}
|
|
|
|
private:
|
|
T epsilon_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct MulFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct AddFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct SubFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct MulInvVarFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const {
|
|
return a * std::sqrt(1.0 / b);
|
|
}
|
|
};
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class LayerNormKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
auto x = *ctx.Input<Tensor>("X");
|
|
|
|
auto* y = ctx.Output<Tensor>("Y");
|
|
auto* mean = ctx.Output<Tensor>("Mean");
|
|
auto* var = ctx.Output<Tensor>("Variance");
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
|
|
const auto x_dims = x.dims();
|
|
|
|
y->mutable_data<T>(ctx.GetPlace());
|
|
mean->mutable_data<T>(ctx.GetPlace());
|
|
var->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
framework::DDim matrix_shape({left, right});
|
|
|
|
x.Resize(matrix_shape);
|
|
Tensor out;
|
|
out.ShareDataWith(*y);
|
|
out.Resize(matrix_shape);
|
|
|
|
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
|
|
defined(__OSX__)
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
|
|
|
|
// get mean
|
|
row_mean(dev_ctx, x, mean);
|
|
|
|
// get variance
|
|
ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
|
|
ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
|
|
row_mean(dev_ctx, out, var);
|
|
|
|
// get x_norm
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
|
|
ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
|
|
ctx, &out, var, /*axis*/ 0,
|
|
DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
|
|
|
|
if (scale) {
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
|
|
}
|
|
if (bias) {
|
|
ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
|
|
ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
|
|
}
|
|
#else
|
|
PADDLE_ENFORCE_EQ(mean->numel(), left);
|
|
PADDLE_ENFORCE_EQ(var->numel(), left);
|
|
PADDLE_ENFORCE_EQ(scale->numel(), right);
|
|
PADDLE_ENFORCE_EQ(bias->numel(), right);
|
|
|
|
auto ker =
|
|
jit::KernelFuncs<jit::LayerNormTuple<T>, platform::CPUPlace>::Cache()
|
|
.At(right);
|
|
ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
|
|
scale->data<T>(), bias->data<T>(), static_cast<int>(left),
|
|
static_cast<const float>(epsilon), right);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class LayerNormGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
auto x = *ctx.Input<Tensor>("X");
|
|
auto* mean = ctx.Input<Tensor>("Mean");
|
|
auto* var = ctx.Input<Tensor>("Variance");
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
|
|
// init output
|
|
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
|
|
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
const auto& x_dims = x.dims();
|
|
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
framework::DDim matrix_shape({left, right});
|
|
|
|
d_y.Resize(matrix_shape);
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
|
|
ctx.device_context());
|
|
|
|
Tensor temp;
|
|
Tensor temp_norm;
|
|
if (d_scale || d_x) {
|
|
x.Resize(matrix_shape);
|
|
temp.mutable_data<T>(matrix_shape, ctx.GetPlace());
|
|
|
|
temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
|
|
// get x_norm
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
|
|
ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
|
|
ctx, &temp_norm, var, /*axis*/ 0,
|
|
DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
|
|
}
|
|
|
|
if (d_bias) {
|
|
d_bias->mutable_data<T>(ctx.GetPlace());
|
|
colwise_sum(dev_ctx, d_y, d_bias);
|
|
}
|
|
if (d_scale) {
|
|
d_scale->mutable_data<T>(ctx.GetPlace());
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
|
|
colwise_sum(dev_ctx, temp, d_scale);
|
|
}
|
|
|
|
if (d_x) {
|
|
framework::DDim vec_shape({left});
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
auto dx_dim = d_x->dims();
|
|
Tensor temp_vec;
|
|
temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());
|
|
|
|
RowwiseMean2D<DeviceContext, T> row_mean(left, right,
|
|
ctx.device_context());
|
|
|
|
if (d_scale) {
|
|
// dy_dx
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
|
|
framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
|
|
|
|
// dy_dmean_dx
|
|
row_mean(dev_ctx, temp, &temp_vec);
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);
|
|
|
|
// dy_var_dx
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
|
|
} else {
|
|
// dy_dx
|
|
framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
|
|
|
|
// dy_dmean_dx
|
|
row_mean(dev_ctx, d_y, &temp_vec);
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);
|
|
|
|
// dy_var_dx
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
|
|
}
|
|
// dy_var_dx
|
|
row_mean(dev_ctx, temp, &temp_vec);
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
|
|
ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
|
|
|
|
ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
|
|
ctx, d_x, var, /*axis*/ 0,
|
|
DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
|
|
d_x->Resize(dx_dim);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|