You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.1 KiB
137 lines
5.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/log_loss_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LogLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
|
|
"Input(Predicted) must be initialized.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
|
"Input(Labels) must be initialized.");
|
|
|
|
auto pred_dims = ctx->GetInputDim("Predicted");
|
|
auto label_dims = ctx->GetInputDim("Labels");
|
|
|
|
if (ctx->IsRuntime() || (framework::product(pred_dims) > 0 &&
|
|
framework::product(label_dims) > 0)) {
|
|
PADDLE_ENFORCE_EQ(pred_dims, label_dims);
|
|
}
|
|
PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
|
|
"The rank of Input(Predicted) must be 2 and the shape is "
|
|
"[batch_size, 1].");
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
|
|
"Each row of Input(Predicted) contains a real value, "
|
|
"so the 2nd dimension of Input(X) must be 1.");
|
|
}
|
|
ctx->SetOutputDim("Loss", {pred_dims[0], 1});
|
|
ctx->ShareLoD("Predicted", "Loss");
|
|
}
|
|
};
|
|
|
|
template <typename AttrType>
|
|
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Predicted",
|
|
"The input value (Predicted) of Log loss op."
|
|
"Predicted is a 2-D tensor with shape [batch_size, 1].");
|
|
AddInput("Labels",
|
|
"The target value (Labels) of Log loss op."
|
|
"Labels is a 2-D tensor with shape [batch_size, 1].");
|
|
AddOutput("Loss",
|
|
"The output tensor with shape [batch_size, 1] "
|
|
"which represents the log loss.");
|
|
AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
|
|
AddComment(R"DOC(
|
|
LogLoss Operator.
|
|
|
|
Log loss is a loss function used for binary classification. Log Loss quantifies
|
|
the accuracy of a classifier by penalising false classifications. Minimising the
|
|
Log Loss is equivalent to maximising the accuracy of the classifier. We define
|
|
Predicted as the values predicted by our model and Labels as the target ground
|
|
truth value. Log loss can evaluate how close the predicted values are to the
|
|
target. The shapes of Predicted and Labels are both [batch_size, 1].
|
|
The equation is:
|
|
|
|
$$
|
|
Loss = - Labels * log(Predicted + \epsilon) -
|
|
(1 - Labels) * log(1 - Predicted + \epsilon)
|
|
$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LogLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
|
|
"Input(Predicted) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
|
"Input(Labels) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
|
"Input(Loss@GRAD) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")),
|
|
"Output(Predicted@GRAD) should not be null.");
|
|
|
|
auto pred_dims = ctx->GetInputDim("Predicted");
|
|
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
|
|
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);
|
|
|
|
auto pred_grad_name = framework::GradVarName("Predicted");
|
|
ctx->SetOutputDim(pred_grad_name, pred_dims);
|
|
}
|
|
};
|
|
|
|
class LogLossGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("log_loss_grad");
|
|
op->SetInput("Predicted", Input("Predicted"));
|
|
op->SetInput("Labels", Input("Labels"));
|
|
op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
|
|
op->SetOutput(framework::GradVarName("Predicted"), InputGrad("Predicted"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
|
|
ops::LogLossGradDescMaker);
|
|
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
log_loss_grad,
|
|
ops::LogLossGradKernel<paddle::platform::CPUDeviceContext, float>);
|