You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
4.6 KiB
131 lines
4.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n,
|
|
int* post) {
|
|
*pre = 1;
|
|
*post = 1;
|
|
*n = dim[axis];
|
|
for (int i = 0; i < axis; ++i) {
|
|
(*pre) *= dim[i];
|
|
}
|
|
for (int i = axis + 1; i < dim.size(); ++i) {
|
|
(*post) *= dim[i];
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class NormKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in_x = ctx.Input<framework::Tensor>("X");
|
|
auto* out_y = ctx.Output<framework::Tensor>("Out");
|
|
auto* out_norm = ctx.Output<framework::Tensor>("Norm");
|
|
out_y->mutable_data<T>(ctx.GetPlace());
|
|
out_norm->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto xdim = in_x->dims();
|
|
T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
|
|
int axis = ctx.Attr<int>("axis");
|
|
if (axis < 0) axis = xdim.size() + axis;
|
|
int pre, n, post;
|
|
GetDims(xdim, axis, &pre, &n, &post);
|
|
|
|
auto* place = ctx.template device_context<DeviceContext>().eigen_device();
|
|
|
|
Eigen::DSizes<int, 3> shape(pre, n, post);
|
|
Eigen::DSizes<int, 2> norm_shape(pre, post);
|
|
|
|
auto x_e = framework::EigenVector<T>::Flatten(*in_x);
|
|
auto y_e = framework::EigenVector<T>::Flatten(*out_y);
|
|
auto norm_e = framework::EigenVector<T>::Flatten(*out_norm);
|
|
auto x = x_e.reshape(shape);
|
|
auto y = y_e.reshape(shape);
|
|
auto norm = norm_e.reshape(norm_shape);
|
|
|
|
Eigen::DSizes<int, 1> rdim(1);
|
|
// y = x / sqrt((sum(x * x) + epsilon))
|
|
// norm = sqrt(sum(x * x) + epsilon)
|
|
auto x2 = x * x;
|
|
auto sum = x2.sum(rdim) + eps;
|
|
norm.device(*place) = sum.sqrt();
|
|
|
|
// y = x / norm
|
|
Eigen::DSizes<int, 3> rshape(pre, 1, post);
|
|
Eigen::DSizes<int, 3> bcast(1, n, 1);
|
|
y.device(*place) = x / norm.reshape(rshape).broadcast(bcast);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, typename AttrType = T>
|
|
class NormGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in_x = ctx.Input<framework::Tensor>("X");
|
|
auto* in_norm = ctx.Input<framework::Tensor>("Norm");
|
|
auto* in_dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
out_dx->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto xdim = in_x->dims();
|
|
int axis = ctx.Attr<int>("axis");
|
|
if (axis < 0) axis = xdim.size() + axis;
|
|
int pre, n, post;
|
|
GetDims(xdim, axis, &pre, &n, &post);
|
|
|
|
auto* place = ctx.template device_context<DeviceContext>().eigen_device();
|
|
|
|
auto x_e = framework::EigenVector<T>::Flatten(*in_x);
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*in_dy);
|
|
auto norm_e = framework::EigenVector<T>::Flatten(*in_norm);
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*out_dx);
|
|
|
|
Eigen::DSizes<int, 3> shape(pre, n, post);
|
|
Eigen::DSizes<int, 3> rshape(pre, 1, post);
|
|
auto x = x_e.reshape(shape);
|
|
auto dy = dy_e.reshape(shape);
|
|
auto norm = norm_e.reshape(rshape);
|
|
auto dx = dx_e.reshape(shape);
|
|
|
|
framework::Tensor rsum;
|
|
rsum.mutable_data<T>({pre, post}, ctx.GetPlace());
|
|
auto sum = framework::EigenTensor<T, 2>::From(rsum);
|
|
|
|
Eigen::DSizes<int, 1> rdim(1);
|
|
Eigen::DSizes<int, 3> bcast(1, n, 1);
|
|
|
|
// dx = ( dy/sqrt(sum(x*x)) ) * [1 - x*sum(x) / (sum(x*x) + e)]
|
|
// = [dy - dy * x * sum(x) / (sum(x*x) + e)] / sqrt(sum(x*x))
|
|
// = [dy - x * sum(x*dy) / (sum(x*x) + e)] / sqrt(sum(x*x))
|
|
// 1. sum = sum(x*dy)
|
|
sum.device(*place) = (x * dy).sum(rdim);
|
|
// 2. dx = x * sum
|
|
dx.device(*place) = sum.reshape(rshape).broadcast(bcast) * x;
|
|
// 3. dx / (sum(x*x) + e)
|
|
// where, norm.pow(2) = sum(x*x) + e, which is calculated in forward.
|
|
dx.device(*place) = dx / norm.pow(2).broadcast(bcast);
|
|
// 4. [dy - dx] / sqrt(sum(x*x))
|
|
dx.device(*place) = (dy - dx) / norm.broadcast(bcast);
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|