You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
3.0 KiB
94 lines
3.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
#include "paddle/fluid/operators/math/padding.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PadConstantLikeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto in_x = context.Input<framework::Tensor>("X");
|
|
auto in_y = context.Input<framework::Tensor>("Y");
|
|
auto* out = context.Output<framework::Tensor>("Out");
|
|
|
|
if (in_x->dims() == in_y->dims()) {
|
|
// TensorCopy(in_y, context.GetPlace(), context, out);
|
|
out->ShareDataWith(*in_y);
|
|
return;
|
|
}
|
|
|
|
T pad_value = context.Attr<T>("pad_value");
|
|
out->mutable_data<T>(context.GetPlace());
|
|
|
|
int rank = context.Input<framework::Tensor>("X")->dims().size();
|
|
|
|
std::vector<int> pads(rank * 2, 0);
|
|
|
|
for (int j = 0; j < rank; ++j) {
|
|
pads[j * 2] = 0;
|
|
pads[j * 2 + 1] = static_cast<int>(in_x->dims()[j] - in_y->dims()[j]);
|
|
}
|
|
|
|
math::PaddingFunctor<DeviceContext, T>(rank, context, pads, pad_value,
|
|
*in_y, out);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PadConstantLikeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto in_y = context.Input<framework::Tensor>("Y");
|
|
auto in_dout =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* d_y = context.Output<framework::Tensor>(framework::GradVarName("Y"));
|
|
|
|
if (d_y == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (in_dout->dims() == in_y->dims()) {
|
|
// TensorCopy(in_dout, context.GetPlace(), context, d_y);
|
|
d_y->ShareDataWith(*in_dout);
|
|
return;
|
|
}
|
|
|
|
d_y->mutable_data<T>(context.GetPlace());
|
|
int rank = in_dout->dims().size();
|
|
|
|
std::vector<int> pads(static_cast<size_t>(rank) * 2, 0);
|
|
for (int j = 0; j < rank; ++j) {
|
|
pads[j * 2] = 0;
|
|
pads[j * 2 + 1] = static_cast<int>(in_dout->dims()[j] - in_y->dims()[j]);
|
|
}
|
|
|
|
math::PaddingGradFunctor<DeviceContext, T>(rank, context, pads, *in_dout,
|
|
d_y);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|