You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.7 KiB
212 lines
7.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/prelu.h"
|
|
#include "paddle/fluid/operators/prelu_op.h"
|
|
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
static const int CUDA_NUM_THREADS = 1024;
|
|
static const int CUDA_MAX_NUM_BLOCKS = 65535;
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CUDAPReluKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* alpha = context.Input<Tensor>("Alpha");
|
|
auto* out = context.Output<Tensor>("Out");
|
|
|
|
const T* x_ptr = x->data<T>();
|
|
T* o_ptr = out->mutable_data<T>(context.GetPlace());
|
|
|
|
const T* alpha_ptr = alpha->data<T>();
|
|
auto& mode = context.Attr<std::string>("mode");
|
|
|
|
int numel = x->numel();
|
|
auto dim = x->dims();
|
|
std::vector<int> input_shape = framework::vectorize<int>(dim);
|
|
|
|
if (mode == "channel") {
|
|
math::PreluChannelWiseDirectCUDAFunctor<T> prelu_channel_wise;
|
|
prelu_channel_wise(context.cuda_device_context().stream(), x_ptr,
|
|
alpha_ptr, o_ptr, input_shape);
|
|
} else if (mode == "element") {
|
|
math::PreluElementWiseDirectCUDAFunctor<T> prelu_element_wise;
|
|
prelu_element_wise(context.cuda_device_context().stream(), x_ptr,
|
|
alpha_ptr, o_ptr, input_shape);
|
|
} else {
|
|
math::PreluScalarDirectCUDAFunctor<T> prelu_scalar;
|
|
prelu_scalar(context.cuda_device_context().stream(), x_ptr, alpha_ptr,
|
|
o_ptr, input_shape);
|
|
}
|
|
}
|
|
};
|
|
|
|
namespace prelu {
|
|
struct ElementWiseMode {};
|
|
struct ChannelMode {};
|
|
struct ScalarMode {};
|
|
} /* namespace prelu */
|
|
|
|
template <typename T, typename M>
|
|
struct AlphaFunctor {
|
|
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
|
|
size_t spatial_size, size_t idx) const {}
|
|
};
|
|
|
|
template <typename T>
|
|
struct AlphaFunctor<T, prelu::ElementWiseMode> {
|
|
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
|
|
size_t spatial_size, size_t idx) const {
|
|
return alpha[blockIdx.x * spatial_size + idx];
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct AlphaFunctor<T, prelu::ChannelMode> {
|
|
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
|
|
size_t spatial_size, size_t idx) const {
|
|
return alpha[blockIdx.x % channel];
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct AlphaFunctor<T, prelu::ScalarMode> {
|
|
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
|
|
size_t spatial_size, size_t idx) const {
|
|
return alpha[0];
|
|
}
|
|
};
|
|
|
|
template <typename T, typename M>
|
|
__global__ void PReluGradElementWiseKernel(const T* x_ptr, const T* y_ptr,
|
|
const T* alpha_ptr, const T* dy_ptr,
|
|
T* dx_ptr, T* dalpha_ptr,
|
|
size_t channel,
|
|
size_t spatial_size) {
|
|
size_t offset = blockIdx.x * spatial_size;
|
|
AlphaFunctor<T, M> alpha_func;
|
|
|
|
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
|
|
T y = y_ptr[offset + i];
|
|
T x = x_ptr[offset + i];
|
|
T dy = dy_ptr[offset + i];
|
|
T alpha = alpha_func(alpha_ptr, channel, spatial_size, i);
|
|
if (dx_ptr != nullptr) dx_ptr[offset + i] = (y > 0) ? dy : alpha * dy;
|
|
if (dalpha_ptr != nullptr) dalpha_ptr[offset + i] = (x > 0) ? 0 : x * dy;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename M>
|
|
class PreluGradElementwiseFunctor {
|
|
public:
|
|
void operator()(cudaStream_t stream, const T* x, const T* y, const T* alpha,
|
|
const T* dy, T* dx, T* dalpha, std::vector<int> input_shape) {
|
|
size_t unroll = input_shape[0] * input_shape[1];
|
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
|
PReluGradElementWiseKernel<T, M><<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
|
x, y, alpha, dy, dx, dalpha, input_shape[1], spatial_size);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct IdentityFunctor {
|
|
HOSTDEVICE inline T operator()(const T& x) const { return x; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CUDAPReluGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* y = context.Input<Tensor>("Out");
|
|
auto* alpha = context.Input<Tensor>("Alpha");
|
|
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* dalpha = context.Output<Tensor>(framework::GradVarName("Alpha"));
|
|
|
|
const T* x_ptr = x->data<T>();
|
|
const T* y_ptr = y->data<T>();
|
|
const T* alpha_ptr = alpha->data<T>();
|
|
const T* dy_ptr = dy->data<T>();
|
|
T* dx_ptr = dx ? dx->mutable_data<T>(context.GetPlace()) : nullptr;
|
|
T* dalpha_ptr =
|
|
dalpha ? dalpha->mutable_data<T>(context.GetPlace()) : nullptr;
|
|
|
|
if (!dx && !dalpha) return;
|
|
|
|
auto& mode = context.Attr<std::string>("mode");
|
|
|
|
int numel = x->numel();
|
|
auto dim = x->dims();
|
|
std::vector<int> input_shape = framework::vectorize<int>(dim);
|
|
auto stream = context.cuda_device_context().stream();
|
|
|
|
T* dalpha_tmp_ptr;
|
|
Tensor dalpha_tmp;
|
|
if (mode == "element" || dalpha_ptr == nullptr) {
|
|
dalpha_tmp_ptr = dalpha_ptr;
|
|
} else {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
dalpha_tmp = context.AllocateTmpTensor<T, DeviceContext>(dim, dev_ctx);
|
|
dalpha_tmp_ptr = dalpha_tmp.mutable_data<T>(context.GetPlace());
|
|
}
|
|
|
|
if (mode == "element") {
|
|
PreluGradElementwiseFunctor<T, prelu::ElementWiseMode> prelu_grad;
|
|
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
|
|
dalpha_tmp_ptr, input_shape);
|
|
} else if (mode == "channel") {
|
|
PreluGradElementwiseFunctor<T, prelu::ChannelMode> prelu_grad;
|
|
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
|
|
dalpha_tmp_ptr, input_shape);
|
|
} else {
|
|
PreluGradElementwiseFunctor<T, prelu::ScalarMode> prelu_grad;
|
|
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
|
|
dalpha_tmp_ptr, input_shape);
|
|
}
|
|
|
|
if (mode == "element" || dalpha_tmp_ptr == nullptr) return;
|
|
|
|
std::vector<int> reduce_dims;
|
|
for (size_t i = 0; i < input_shape.size(); i++) {
|
|
if (mode == "channel" && i == 1) continue;
|
|
reduce_dims.push_back(i);
|
|
}
|
|
|
|
TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
|
|
dalpha_tmp, dalpha, reduce_dims, static_cast<T>(0), cub::Sum(),
|
|
IdentityFunctor<T>(), stream);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
prelu, ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, double>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
prelu_grad,
|
|
ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, double>);
|