You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
15 KiB
365 lines
15 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
HOSTDEVICE T PrRoIPoolingGetData(const T* data, const int h, const int w,
|
|
const int height, const int width) {
|
|
bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
|
|
T retVal = overflow ? 0.0f : data[h * width + w];
|
|
return retVal;
|
|
}
|
|
|
|
template <typename T>
|
|
HOSTDEVICE T PrRoIPoolingMatCalculation(const T* this_data, const int s_h,
|
|
const int s_w, const int e_h,
|
|
const int e_w, const T y0, const T x0,
|
|
const T y1, const T x1, const int h0,
|
|
const int w0) {
|
|
T alpha, beta, lim_alpha, lim_beta, tmp;
|
|
T sum_out = 0;
|
|
|
|
alpha = x0 - static_cast<T>(s_w);
|
|
beta = y0 - static_cast<T>(s_h);
|
|
lim_alpha = x1 - static_cast<T>(s_w);
|
|
lim_beta = y1 - static_cast<T>(s_h);
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
sum_out += PrRoIPoolingGetData(this_data, s_h, s_w, h0, w0) * tmp;
|
|
|
|
alpha = static_cast<T>(e_w) - x1;
|
|
lim_alpha = static_cast<T>(e_w) - x0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
sum_out += PrRoIPoolingGetData(this_data, s_h, e_w, h0, w0) * tmp;
|
|
|
|
alpha = x0 - static_cast<T>(s_w);
|
|
beta = static_cast<T>(e_h) - y1;
|
|
lim_alpha = x1 - static_cast<T>(s_w);
|
|
lim_beta = static_cast<T>(e_h) - y0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
sum_out += PrRoIPoolingGetData(this_data, e_h, s_w, h0, w0) * tmp;
|
|
|
|
alpha = static_cast<T>(e_w) - x1;
|
|
lim_alpha = static_cast<T>(e_w) - x0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
sum_out += PrRoIPoolingGetData(this_data, e_h, e_w, h0, w0) * tmp;
|
|
|
|
return sum_out;
|
|
}
|
|
|
|
template <typename T>
|
|
HOSTDEVICE void PrRoIPoolingDistributeDiff(T* diff, const T top_diff,
|
|
const int h, const int w,
|
|
const int height, const int width,
|
|
const T coeff) {
|
|
bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
|
|
if (!overflow) {
|
|
*(diff + h * width + w) = top_diff * coeff;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename Functor>
|
|
HOSTDEVICE void PrRoIPoolingMatDistributeDiff(
|
|
T* diff, const T top_diff, const int s_h, const int s_w, const int e_h,
|
|
const int e_w, const T y0, const T x0, const T y1, const T x1, const int h0,
|
|
const int w0, Functor functor) {
|
|
T alpha, beta, lim_alpha, lim_beta, tmp;
|
|
|
|
alpha = x0 - static_cast<T>(s_w);
|
|
beta = y0 - static_cast<T>(s_h);
|
|
lim_alpha = x1 - static_cast<T>(s_w);
|
|
lim_beta = y1 - static_cast<T>(s_h);
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
functor(diff, top_diff, s_h, s_w, h0, w0, tmp);
|
|
|
|
alpha = static_cast<T>(e_w) - x1;
|
|
lim_alpha = static_cast<T>(e_w) - x0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
functor(diff, top_diff, s_h, e_w, h0, w0, tmp);
|
|
|
|
alpha = x0 - static_cast<T>(s_w);
|
|
beta = static_cast<T>(e_h) - y1;
|
|
lim_alpha = x1 - static_cast<T>(s_w);
|
|
lim_beta = static_cast<T>(e_h) - y0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
functor(diff, top_diff, e_h, s_w, h0, w0, tmp);
|
|
|
|
alpha = static_cast<T>(e_w) - x1;
|
|
lim_alpha = static_cast<T>(e_w) - x0;
|
|
tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
|
|
0.5f * alpha * alpha) *
|
|
(lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
|
|
functor(diff, top_diff, e_h, e_w, h0, w0, tmp);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CPUPRROIPoolOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<framework::Tensor>("X");
|
|
auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
|
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto output_channels = ctx.Attr<int>("output_channels");
|
|
|
|
auto in_dims = in->dims();
|
|
int batch_size = in_dims[0];
|
|
int input_channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
int rois_num = rois->dims()[0];
|
|
|
|
auto in_stride = framework::stride(in_dims);
|
|
auto out_stride = framework::stride(out->dims());
|
|
|
|
const T* input_data = in->data<T>();
|
|
|
|
framework::Tensor rois_batch_id_list;
|
|
rois_batch_id_list.Resize({rois_num});
|
|
int* rois_batch_id_data =
|
|
rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_batch_size, batch_size,
|
|
"the rois_batch_size and input(X) batch_size should be the same.");
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(rois_num_with_lod, rois_num,
|
|
"the rois_num from input and lod must be the same");
|
|
|
|
PADDLE_ENFORCE_EQ(input_channels,
|
|
output_channels * pooled_height * pooled_width,
|
|
"the channels of input X should equal the product of "
|
|
"output_channels x pooled_height x pooled_width");
|
|
|
|
// calculate batch id index for each roi according to LoD
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
rois_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
T* output_data = out->mutable_data<T>(ctx.GetPlace());
|
|
const T* input_rois = rois->data<T>();
|
|
|
|
// calculate prroipooling, parallel processing can be implemented per ROI
|
|
for (int n = 0; n < rois_num; ++n) {
|
|
// set roi batch id
|
|
int roi_batch_id = rois_batch_id_data[n];
|
|
|
|
// [start, end) interval for spatial sampling
|
|
const T* offset_input_rois = input_rois + n * 4;
|
|
T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
|
|
T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
|
|
T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
|
|
T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;
|
|
|
|
T roi_width = std::max(roi_end_w - roi_start_w, static_cast<T>(0.0));
|
|
T roi_height = std::max(roi_end_h - roi_start_h, static_cast<T>(0.0));
|
|
|
|
// Compute w and h at input feature map
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
T win_size = std::max(static_cast<T>(0.0), bin_size_w * bin_size_h);
|
|
|
|
// calculate each pixel of the output feature map.
|
|
int out_roi_offset = n * out_stride[0];
|
|
for (int c = 0; c < output_channels; ++c) {
|
|
// per category
|
|
int out_plane_offset = out_roi_offset + c * out_stride[1];
|
|
for (int ph = 0; ph < pooled_height; ++ph) {
|
|
int out_row_offset = out_plane_offset + ph * out_stride[2];
|
|
for (int pw = 0; pw < pooled_width; ++pw) {
|
|
// calculate w and h at input feature map
|
|
T win_start_h = static_cast<T>(ph) * bin_size_h + roi_start_h;
|
|
T win_start_w = static_cast<T>(pw) * bin_size_w + roi_start_w;
|
|
T win_end_h = win_start_h + bin_size_h;
|
|
T win_end_w = win_start_w + bin_size_w;
|
|
// Add roi offsets and clip to input boundaries
|
|
int s_w = std::floor(win_start_w);
|
|
int e_w = std::ceil(win_end_w);
|
|
int s_h = std::floor(win_start_h);
|
|
int e_h = std::ceil(win_end_h);
|
|
|
|
int output_index = out_row_offset + pw;
|
|
int input_channel = (c * pooled_height + ph) * pooled_width + pw;
|
|
int input_plane_offset =
|
|
roi_batch_id * in_stride[0] + input_channel * in_stride[1];
|
|
const T* offset_input_data = input_data + input_plane_offset;
|
|
T sum_out = 0.;
|
|
|
|
if (win_size > static_cast<T>(0.0)) {
|
|
for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
|
|
for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
|
|
sum_out += PrRoIPoolingMatCalculation(
|
|
offset_input_data, h_iter, w_iter, h_iter + 1, w_iter + 1,
|
|
std::max(win_start_h, static_cast<T>(h_iter)),
|
|
std::max(win_start_w, static_cast<T>(w_iter)),
|
|
std::min(win_end_h,
|
|
static_cast<T>(h_iter) + static_cast<T>(1.0)),
|
|
std::min(win_end_w,
|
|
static_cast<T>(w_iter) + static_cast<T>(1.0)),
|
|
height, width);
|
|
}
|
|
}
|
|
|
|
output_data[output_index] = sum_out / win_size;
|
|
} else {
|
|
output_data[output_index] = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<framework::Tensor>("X");
|
|
auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
|
|
auto* output_grad =
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* input_grad =
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto output_channels = ctx.Attr<int>("output_channels");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
if (input_grad) {
|
|
auto in_dims = in->dims();
|
|
int input_channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
int rois_num = rois->dims()[0];
|
|
|
|
// set roi batch id
|
|
framework::Tensor rois_batch_id_list;
|
|
rois_batch_id_list.Resize({rois_num});
|
|
int* rois_batch_id_data =
|
|
rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
// calculate batch id index for each roi according to LoD
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
rois_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
const T* input_rois = rois->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
// set gradient of X to be 0. before backpropagate.
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
set_zero(ctx.template device_context<DeviceContext>(), input_grad,
|
|
static_cast<T>(0));
|
|
|
|
// backpropagate gradient per output pixel
|
|
int output_grad_size = output_grad->numel();
|
|
for (int i = 0; i < output_grad_size; ++i) {
|
|
// The output is in order (n, c, ph, pw)
|
|
int pw = i % pooled_width;
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
int c = (i / pooled_width / pooled_height) % output_channels;
|
|
int n = i / pooled_width / pooled_height / output_channels;
|
|
|
|
// set roi_batch_id
|
|
int roi_batch_id = rois_batch_id_data[n];
|
|
int input_channel = (c * pooled_height + ph) * pooled_width + pw;
|
|
int input_offset =
|
|
(roi_batch_id * input_channels + input_channel) * height * width;
|
|
T* offset_input_grad_data = input_grad_data + input_offset;
|
|
const T* offset_output_grad_data = output_grad_data + i;
|
|
|
|
// [start, end) interval for spatial sampling
|
|
const T* offset_input_rois = input_rois + n * 4;
|
|
T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
|
|
T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
|
|
T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
|
|
T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;
|
|
|
|
T roi_width = std::max(roi_end_w - roi_start_w, static_cast<T>(0.0));
|
|
T roi_height = std::max(roi_end_h - roi_start_h, static_cast<T>(0.0));
|
|
|
|
// Compute w and h at input feature map
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
|
|
T win_start_w = roi_start_w + bin_size_w * pw;
|
|
T win_start_h = roi_start_h + bin_size_h * ph;
|
|
T win_end_w = win_start_w + bin_size_w;
|
|
T win_end_h = win_start_h + bin_size_h;
|
|
|
|
T win_size = std::max(static_cast<T>(0.0), bin_size_w * bin_size_h);
|
|
|
|
T sum_out = win_size == static_cast<T>(0.)
|
|
? static_cast<T>(0.)
|
|
: *offset_output_grad_data / win_size;
|
|
|
|
int s_w = std::floor(win_start_w);
|
|
int e_w = std::ceil(win_end_w);
|
|
int s_h = std::floor(win_start_h);
|
|
int e_h = std::ceil(win_end_h);
|
|
|
|
for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
|
|
for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
|
|
PrRoIPoolingMatDistributeDiff(
|
|
offset_input_grad_data, sum_out, h_iter, w_iter, h_iter + 1,
|
|
w_iter + 1, std::max(win_start_h, static_cast<T>(h_iter)),
|
|
std::max(win_start_w, static_cast<T>(w_iter)),
|
|
std::min(win_end_h,
|
|
static_cast<T>(h_iter) + static_cast<T>(1.0)),
|
|
std::min(win_end_w,
|
|
static_cast<T>(w_iter) + static_cast<T>(1.0)),
|
|
height, width, PrRoIPoolingDistributeDiff<T>);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|