You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
19 KiB
479 lines
19 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
inline std::vector<int> get_new_shape(
|
|
const std::vector<const Tensor *> &list_new_shape_tensor) {
|
|
// get tensor from
|
|
std::vector<int> vec_new_shape;
|
|
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
|
|
auto tensor = list_new_shape_tensor[i];
|
|
PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
|
|
"shape of dim tensor should be [1]");
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
|
|
vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
|
|
} else {
|
|
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
|
|
}
|
|
}
|
|
|
|
return vec_new_shape;
|
|
}
|
|
|
|
class ReshapeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
"Input(X) of ReshapeOp should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
"Output(Out) of ReshapeOp should not be null.");
|
|
|
|
if (ctx->HasInputs("ShapeTensor")) {
|
|
// top prority shape
|
|
auto ShapeTensor = ctx->Inputs("ShapeTensor");
|
|
PADDLE_ENFORCE_GT(ShapeTensor.size(), 0,
|
|
"The size of Input(ShapeTensor) can't be zero");
|
|
auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
const int64_t copy_dim_val = 0;
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
for (size_t i = 0; i < infer_shape.size(); ++i) {
|
|
if (infer_shape[i] == copy_dim_val) {
|
|
PADDLE_ENFORCE_LT(
|
|
static_cast<int>(i), in_dims.size(),
|
|
"The dimension of data to copy from input must be less "
|
|
"than the dimension of input.");
|
|
infer_shape[i] = in_dims[i];
|
|
}
|
|
}
|
|
auto infer_out_dims = framework::make_ddim(infer_shape);
|
|
ctx->SetOutputDim("Out", infer_out_dims);
|
|
return;
|
|
}
|
|
|
|
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
if (ctx->HasInput("Shape") && shape.empty()) {
|
|
auto shape_dims = ctx->GetInputDim("Shape");
|
|
int num_ele = 1;
|
|
for (int i = 0; i < shape_dims.size(); ++i) {
|
|
num_ele *= shape_dims[i];
|
|
}
|
|
auto vec_dims = std::vector<int>(num_ele, -1);
|
|
auto out_dims = framework::make_ddim(vec_dims);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
return;
|
|
}
|
|
|
|
if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
|
|
// If true, set the shape of Output(Out) according to Input(Shape) in
|
|
// ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
return;
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(!shape.empty(), true,
|
|
"The shape information must be set by Attr(shape).");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto out_dims = ValidateShape(shape, x_dims);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (x_dims[0] == out_dims[0]) {
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
// are the same.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
static framework::DDim ValidateShape(const std::vector<int> shape,
|
|
const framework::DDim &in_dims) {
|
|
const int64_t in_size = framework::product(in_dims);
|
|
auto in_dims_vec = framework::vectorize(in_dims);
|
|
bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
|
|
[](int64_t i) { return i > 0; });
|
|
// only one dimension can be set to -1, whose size will be automatically
|
|
// infered.
|
|
const int64_t unk_dim_val = -1;
|
|
const int64_t copy_dim_val = 0;
|
|
|
|
std::vector<int64_t> output_shape(shape.size(), 0);
|
|
int64_t capacity = 1;
|
|
int unk_dim_idx = -1;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == unk_dim_val) {
|
|
PADDLE_ENFORCE_EQ(
|
|
unk_dim_idx, -1,
|
|
"Only one input dimension of Attr(shape) can be unknown.");
|
|
unk_dim_idx = i;
|
|
} else if (shape[i] == copy_dim_val) {
|
|
PADDLE_ENFORCE_LT(
|
|
static_cast<int>(i), in_dims.size(),
|
|
"The index of dimension to copy from input shape must be less "
|
|
"than the size of input shape.");
|
|
} else {
|
|
PADDLE_ENFORCE_GT(
|
|
shape[i], 0,
|
|
"Each input dimension of Attr(shape) must not be negtive except "
|
|
"one unknown dimension.");
|
|
}
|
|
|
|
capacity *= (shape[i] ? shape[i] : in_dims[i]);
|
|
output_shape[i] =
|
|
(shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
|
|
}
|
|
|
|
if (unk_dim_idx != -1) {
|
|
if (all_positive) {
|
|
// in_size < 0 and is un-determinate in compile time, skip the check,
|
|
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
|
|
// capacity = -24, in_size = -8, output_shape[0] = 0
|
|
// the following check will fail.
|
|
output_shape[unk_dim_idx] = -in_size / capacity;
|
|
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
|
|
"Invalid shape is given.");
|
|
} else {
|
|
output_shape[unk_dim_idx] = -1;
|
|
}
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
|
|
}
|
|
return framework::make_ddim(output_shape);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
if (var_name == "ShapeTensor") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor). The input tensor of reshape operator.");
|
|
AddInput("Shape",
|
|
"(Tensor<int32>, optional). If provided, reshape according to "
|
|
"this given shape. That is to say it has a higher priority than "
|
|
"the shape attribute, while the shape attribute still should be "
|
|
"set correctly to gurantee shape inference in compile time.")
|
|
.AsDispensable();
|
|
AddInput(
|
|
"ShapeTensor",
|
|
"(vector<Tensor<int32>>, optional). If provided, reshape will use this"
|
|
"The shape of the tensor in vector MUST BE [1]"
|
|
"it has the highest priority compare with Input(Shape) and "
|
|
"attr(shape).")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
|
|
AddAttr<std::vector<int>>(
|
|
"shape", "(std::vector<int>) Target shape of reshape operator.")
|
|
.SetDefault({});
|
|
AddComment(R"DOC(
|
|
Reshape Operator.
|
|
|
|
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
|
|
data in Input(X) are unchanged.
|
|
|
|
Examples:
|
|
|
|
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
|
|
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
|
|
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.
|
|
|
|
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
|
|
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
|
|
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
|
|
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
|
|
the value of this dimension is inferred from the total element number of
|
|
Input(X) and remaining dimensions.
|
|
|
|
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
|
|
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
|
|
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
|
|
unchanged. In this case, besides -1, 0 means the actual dimension value is going
|
|
to be copied from the corresponding dimension of Input(X).
|
|
|
|
Note:
|
|
|
|
1. One and only one dimension in Attr(shape) can be set -1. In this case,
|
|
the actual dimension value will be infered from the total element number of
|
|
Input(X) and remaining dimensions.
|
|
|
|
2. More than one dimensions in Attr(shape) can be set to 0, which means the real
|
|
dimension value will be copied from Input(X) at runtime. Note that the index of
|
|
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
|
|
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
|
|
|
|
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
|
|
Attr(shape) still should be set correctly to gurantee shape inference in
|
|
compile-time.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ReshapeGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) shouldn't be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ReshapeKernel {
|
|
public:
|
|
void operator()(const framework::ExecutionContext &ctx) const {
|
|
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
|
auto *in = ctx.Input<framework::LoDTensor>("X");
|
|
|
|
framework::DDim out_dims = out->dims();
|
|
|
|
auto list_new_shape_tensor =
|
|
ctx.MultiInput<framework::Tensor>("ShapeTensor");
|
|
if (list_new_shape_tensor.size() > 0) {
|
|
// have shape tensor
|
|
auto new_shape = get_new_shape(list_new_shape_tensor);
|
|
out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());
|
|
|
|
} else {
|
|
auto *shape_tensor = ctx.HasInput("Shape")
|
|
? ctx.Input<framework::LoDTensor>("Shape")
|
|
: nullptr;
|
|
|
|
if (shape_tensor) {
|
|
auto *shape_data = shape_tensor->data<int>();
|
|
framework::Tensor cpu_shape_tensor;
|
|
if (platform::is_gpu_place(shape_tensor->place())) {
|
|
TensorCopySync(*shape_tensor, platform::CPUPlace(),
|
|
&cpu_shape_tensor);
|
|
shape_data = cpu_shape_tensor.data<int>();
|
|
}
|
|
auto shape =
|
|
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
|
|
out_dims = ReshapeOp::ValidateShape(shape, in->dims());
|
|
}
|
|
}
|
|
|
|
out->Resize(out_dims);
|
|
out->mutable_data(ctx.GetPlace(), in->type());
|
|
framework::TensorCopy(
|
|
*in, ctx.GetPlace(),
|
|
ctx.template device_context<platform::DeviceContext>(), out);
|
|
out->Resize(out_dims);
|
|
}
|
|
};
|
|
|
|
class ReshapeGradKernel {
|
|
public:
|
|
void operator()(const framework::ExecutionContext &ctx) const {
|
|
auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto in_dims = d_x->dims();
|
|
|
|
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
|
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
|
d_x->Resize(in_dims);
|
|
}
|
|
};
|
|
|
|
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
|
|
// the XShape is used to carry the shape and lod of X which will be used in
|
|
// reshape_grad, in this way, the framework can reuse the memory of X
|
|
// immediately the reshape_op is finished.
|
|
// Considering compatibility issues, we could not fix reshape_op
|
|
class Reshape2Op : public ReshapeOp {
|
|
public:
|
|
Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ReshapeOp(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
|
|
"Output(XShape) of ReshapeOp should not be null.");
|
|
const auto &x_dims = ctx->GetInputDim("X");
|
|
std::vector<int64_t> xshape_dims(x_dims.size() + 1);
|
|
xshape_dims[0] = 0;
|
|
for (int i = 0; i < x_dims.size(); ++i) {
|
|
xshape_dims[i + 1] = x_dims[i];
|
|
}
|
|
ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
|
|
ctx->ShareLoD("X", /*->*/ "XShape");
|
|
|
|
ReshapeOp::InferShape(ctx);
|
|
}
|
|
};
|
|
|
|
class Reshape2OpMaker : public ReshapeOpMaker {
|
|
public:
|
|
void Make() override {
|
|
ReshapeOpMaker::Make();
|
|
AddOutput("XShape",
|
|
"XShape is just used to store the shape and lod of X, which will "
|
|
"be used in FlattenGradOp.")
|
|
.AsIntermediate();
|
|
}
|
|
};
|
|
|
|
class Reshape2GradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *grad_op = new framework::OpDesc();
|
|
grad_op->SetType("reshape2_grad");
|
|
grad_op->SetInput("XShape", Output("XShape"));
|
|
grad_op->SetInput("ShapeTensor", Input("ShapeTensor"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
class Reshape2GradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
Reshape2GradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("XShape"), true,
|
|
"Input(XShape) shouldn't be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
auto xshape_dims = ctx->GetInputDim("XShape");
|
|
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
ctx->ShareLoD("XShape", framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
if (var_name == "ShapeTensor") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInToOut, {"X", "Out"});
|
|
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInToOut,
|
|
{framework::GradVarName("Out"),
|
|
framework::GradVarName("X")});
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
namespace plat = paddle::platform;
|
|
|
|
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>,
|
|
ops::ReshapeOpInplaceInToOut);
|
|
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
|
|
ops::ReshapeGradInplaceInToOut);
|
|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
|
|
ops::ReshapeKernel, int, ops::ReshapeKernel,
|
|
int64_t, ops::ReshapeKernel);
|
|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
|
|
double, ops::ReshapeGradKernel, int,
|
|
ops::ReshapeGradKernel, int64_t,
|
|
ops::ReshapeGradKernel);
|
|
|
|
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
|
|
ops::Reshape2GradMaker, ops::ReshapeOpInplaceInToOut);
|
|
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
|
|
ops::ReshapeGradInplaceInToOut);
|
|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
|
|
ops::ReshapeKernel, int, ops::ReshapeKernel,
|
|
int64_t, ops::ReshapeKernel);
|
|
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
|
|
double, ops::ReshapeGradKernel, int,
|
|
ops::ReshapeGradKernel, int64_t,
|
|
ops::ReshapeGradKernel);
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
|
|
ops::ReshapeKernel, int, ops::ReshapeKernel,
|
|
int64_t, ops::ReshapeKernel, plat::float16,
|
|
ops::ReshapeKernel);
|
|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
|
|
double, ops::ReshapeGradKernel, int,
|
|
ops::ReshapeGradKernel, int64_t,
|
|
ops::ReshapeGradKernel, plat::float16,
|
|
ops::ReshapeGradKernel);
|
|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
|
|
ops::ReshapeKernel, int, ops::ReshapeKernel,
|
|
int64_t, ops::ReshapeKernel, plat::float16,
|
|
ops::ReshapeKernel);
|
|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
|
|
double, ops::ReshapeGradKernel, int,
|
|
ops::ReshapeGradKernel, int64_t,
|
|
ops::ReshapeGradKernel, plat::float16,
|
|
ops::ReshapeGradKernel);
|
|
#endif
|