You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
14 KiB
360 lines
14 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/memory/memory.h"
|
|
#include "paddle/fluid/operators/roi_align_op.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
static constexpr int kNumCUDAThreads = 512;
|
|
static constexpr int kNumMaxinumNumBlocks = 4096;
|
|
|
|
static inline int NumBlocks(const int N) {
|
|
return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
|
|
kNumMaxinumNumBlocks);
|
|
}
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
template <class T>
|
|
__device__ T BilinearInterpolate(const T* input_data, const int height,
|
|
const int width, T y, T x) {
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
|
return 0;
|
|
}
|
|
y = y <= 0 ? 0 : y;
|
|
x = x <= 0 ? 0 : x;
|
|
int y_low = static_cast<int>(y);
|
|
int x_low = static_cast<int>(x);
|
|
int y_high;
|
|
int x_high;
|
|
if (y_low >= height - 1) {
|
|
y_high = y_low = height - 1;
|
|
y = static_cast<T>(y_low);
|
|
} else {
|
|
y_high = y_low + 1;
|
|
}
|
|
if (x_low >= width - 1) {
|
|
x_high = x_low = width - 1;
|
|
x = static_cast<T>(x_low);
|
|
} else {
|
|
x_high = x_low + 1;
|
|
}
|
|
T ly = y - y_low, lx = x - x_low;
|
|
T hy = 1. - ly, hx = 1. - lx;
|
|
|
|
T v1 = input_data[y_low * width + x_low];
|
|
T v2 = input_data[y_low * width + x_high];
|
|
T v3 = input_data[y_high * width + x_low];
|
|
T v4 = input_data[y_high * width + x_high];
|
|
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
|
|
|
|
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
|
return val;
|
|
}
|
|
|
|
template <class T>
|
|
__device__ void BilinearInterpolateGradient(const int height, const int width,
|
|
T y, T x, T* w1, T* w2, T* w3,
|
|
T* w4, int* x_low, int* x_high,
|
|
int* y_low, int* y_high) {
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
|
return;
|
|
}
|
|
|
|
y = y <= 0 ? 0 : y;
|
|
x = x <= 0 ? 0 : x;
|
|
*y_low = static_cast<int>(y);
|
|
*x_low = static_cast<int>(x);
|
|
if (*y_low >= height - 1) {
|
|
*y_high = *y_low = height - 1;
|
|
y = static_cast<T>(*y_low);
|
|
} else {
|
|
*y_high = *y_low + 1;
|
|
}
|
|
if (*x_low >= width - 1) {
|
|
*x_high = *x_low = width - 1;
|
|
x = static_cast<T>(*x_low);
|
|
} else {
|
|
*x_high = *x_low + 1;
|
|
}
|
|
T ly = y - *y_low, lx = x - *x_low;
|
|
T hy = 1. - ly, hx = 1. - lx;
|
|
*w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
|
|
|
|
return;
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void GPUROIAlignForward(
|
|
const int nthreads, const T* input_data, const T* input_rois,
|
|
const float spatial_scale, const int channels, const int height,
|
|
const int width, const int pooled_height, const int pooled_width,
|
|
const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
|
|
CUDA_1D_KERNEL_LOOP(i, nthreads) {
|
|
int pw = i % pooled_width;
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
int c = (i / pooled_width / pooled_height) % channels;
|
|
int n = i / pooled_width / pooled_height / channels;
|
|
|
|
const T* offset_input_rois = input_rois + n * kROISize;
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
|
|
T roi_xmin = offset_input_rois[0] * spatial_scale;
|
|
T roi_ymin = offset_input_rois[1] * spatial_scale;
|
|
T roi_xmax = offset_input_rois[2] * spatial_scale;
|
|
T roi_ymax = offset_input_rois[3] * spatial_scale;
|
|
|
|
T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
|
|
T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
const T* offset_input_data =
|
|
input_data + (roi_batch_ind * channels + c) * height * width;
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
? sampling_ratio
|
|
: ceil(roi_height / pooled_height);
|
|
int roi_bin_grid_w =
|
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
|
|
const T count = roi_bin_grid_h * roi_bin_grid_w;
|
|
T output_val = 0;
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
const T y = roi_ymin + ph * bin_size_h +
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
static_cast<T>(roi_bin_grid_h);
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
const T x = roi_xmin + pw * bin_size_w +
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
static_cast<T>(roi_bin_grid_w);
|
|
T val = BilinearInterpolate(offset_input_data, height, width, y, x);
|
|
output_val += val;
|
|
}
|
|
}
|
|
output_val /= count;
|
|
output_data[i] = output_val;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
|
|
const T* out_grad, const int num_rois,
|
|
const float spatial_scale,
|
|
const int channels, const int height,
|
|
const int width, const int pooled_height,
|
|
const int pooled_width,
|
|
const int sampling_ratio,
|
|
int* roi_batch_id_data, T* input_grad) {
|
|
CUDA_1D_KERNEL_LOOP(i, nthreads) {
|
|
int pw = i % pooled_width;
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
int c = (i / pooled_width / pooled_height) % channels;
|
|
int n = i / pooled_width / pooled_height / channels;
|
|
const T* offset_input_rois = input_rois + n * kROISize;
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
|
|
T roi_xmin = offset_input_rois[0] * spatial_scale;
|
|
T roi_ymin = offset_input_rois[1] * spatial_scale;
|
|
T roi_xmax = offset_input_rois[2] * spatial_scale;
|
|
T roi_ymax = offset_input_rois[3] * spatial_scale;
|
|
|
|
T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
|
|
T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
T* offset_input_grad =
|
|
input_grad + (roi_batch_ind * channels + c) * height * width;
|
|
|
|
const T* offset_out_grad =
|
|
out_grad + (n * channels + c) * pooled_height * pooled_width;
|
|
const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
? sampling_ratio
|
|
: ceil(roi_height / pooled_height);
|
|
int roi_bin_grid_w =
|
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
|
|
|
|
const T count = roi_bin_grid_h * roi_bin_grid_w;
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
const T y = roi_ymin + ph * bin_size_h +
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
static_cast<T>(roi_bin_grid_h);
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
const T x = roi_xmin + pw * bin_size_w +
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
static_cast<T>(roi_bin_grid_w);
|
|
T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
|
|
int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
|
|
BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
|
|
&x_low, &x_high, &y_low, &y_high);
|
|
T diff1 = out_grad_this_bin * w1 / count;
|
|
T diff2 = out_grad_this_bin * w2 / count;
|
|
T diff3 = out_grad_this_bin * w3 / count;
|
|
T diff4 = out_grad_this_bin * w4 / count;
|
|
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
|
platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
|
|
diff1);
|
|
platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
|
|
diff2);
|
|
platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
|
|
diff3);
|
|
platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
|
|
diff4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Place, typename T>
|
|
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
|
|
|
|
auto in_dims = in->dims();
|
|
int batch_size = in_dims[0];
|
|
int channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
if (rois_num == 0) return;
|
|
|
|
int output_size = out->numel();
|
|
int blocks = NumBlocks(output_size);
|
|
int threads = kNumCUDAThreads;
|
|
|
|
Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({rois_num});
|
|
auto cplace = platform::CPUPlace();
|
|
int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_batch_size, batch_size,
|
|
"The rois_batch_size and imgs batch_size must be the same.");
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
|
|
"The rois_num from input and lod must be the same.");
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
roi_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
int bytes = roi_batch_id_list.numel() * sizeof(int);
|
|
auto roi_ptr = memory::Alloc(dev_ctx, bytes);
|
|
int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
|
|
const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
|
|
dev_ctx.stream());
|
|
GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
|
|
output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
|
|
height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
|
|
out->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
|
|
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
|
|
|
|
int rois_num = rois->dims()[0];
|
|
int channels = in->dims()[1];
|
|
int height = in->dims()[2];
|
|
int width = in->dims()[3];
|
|
|
|
if (!in_grad) {
|
|
return;
|
|
}
|
|
Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({rois_num});
|
|
auto cplace = platform::CPUPlace();
|
|
int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
roi_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
auto roi_ptr =
|
|
memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
|
|
int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
|
|
int bytes = roi_batch_id_list.numel() * sizeof(int);
|
|
const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
|
|
dev_ctx.stream());
|
|
in_grad->mutable_data<T>(ctx.GetPlace());
|
|
math::SetConstant<Place, T> set_zero;
|
|
set_zero(dev_ctx, in_grad, static_cast<T>(0));
|
|
|
|
int output_grad_size = out_grad->numel();
|
|
int blocks = NumBlocks(output_grad_size);
|
|
int threads = kNumCUDAThreads;
|
|
|
|
if (output_grad_size > 0) {
|
|
GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
|
|
output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
|
|
spatial_scale, channels, height, width, pooled_height, pooled_width,
|
|
sampling_ratio, roi_id_data,
|
|
in_grad->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
roi_align,
|
|
ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
roi_align_grad,
|
|
ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);
|