You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
5.2 KiB
140 lines
5.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/scatter_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ScatterOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ScatterOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Ids"),
|
|
"Input(Ids) of ScatterOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Updates"),
|
|
"Input(Updates) of ScatterOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ScatterOp should not be null.");
|
|
|
|
auto updates_dims = ctx->GetInputDim("Updates");
|
|
auto ref_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Ids").size(), 1,
|
|
"Update Ids should be 1-D.");
|
|
PADDLE_ENFORCE_EQ(ref_dims.size(), updates_dims.size(),
|
|
"Xerence and Updates should have the same shape size");
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Updates")[0],
|
|
ctx->GetInputDim("Ids")[0],
|
|
"Updates and Ids should have same batch-size.");
|
|
ctx->SetOutputDim("Out", ref_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ScatterGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
if (ctx->HasOutput(framework::GradVarName("Updates"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Updates"),
|
|
ctx->GetInputDim("Updates"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"),
|
|
ctx->GetInputDim(framework::GradVarName("Out")));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ScatterOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The source input of scatter op");
|
|
AddInput("Ids", "The index input of scatter op where X will be updated");
|
|
AddInput("Updates", "The updated value of scatter op");
|
|
AddOutput("Out", "The output of scatter op");
|
|
AddAttr<bool>("overwrite",
|
|
"(bool, defalut: True) "
|
|
"The mode that updating the output when has same index,"
|
|
"If True, use the overwrite mode to update the output"
|
|
"of the same index, if False, use the accumulate mode to"
|
|
"update the output of the same index,Default value is True."
|
|
"You can set overwrite=False to implement scatter_add.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Scatter Operator.
|
|
|
|
This operator obtains output by updating the input on selected indices on the first axis:
|
|
|
|
$$
|
|
Out = X \\
|
|
Out[Ids] = Updates
|
|
$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ScatterGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("scatter_grad");
|
|
op->SetInput("Ids", Input("Ids"));
|
|
op->SetInput("Updates", Input("Updates"));
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Updates"), InputGrad("Updates"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ScatterGradNoNeedBufferVarsInference,
|
|
"Updates");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(scatter, ops::ScatterOp, ops::ScatterOpMaker,
|
|
ops::ScatterGradDescMaker);
|
|
REGISTER_OPERATOR(scatter_grad, ops::ScatterGradOp,
|
|
ops::ScatterGradNoNeedBufferVarsInference);
|
|
REGISTER_OP_CPU_KERNEL(scatter, ops::ScatterOpKernel<float>);
|
|
REGISTER_OP_CPU_KERNEL(scatter_grad, ops::ScatterGradientOpKernel<float>);
|