You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.8 KiB
136 lines
4.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/selu_op.h"
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SeluOp : public framework::OperatorWithKernel {
|
|
public:
|
|
SeluOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SeluOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SeluOp should not be null.");
|
|
|
|
ctx->ShareDim("X", /*->*/ "Out");
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::GetDataTypeOfVar(ctx.InputVar("X")), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class SeluOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
|
|
const override {
|
|
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
|
|
}
|
|
};
|
|
|
|
class SeluOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The input tensor of selu operator.");
|
|
AddOutput("Out", "The output tensor of selu operator.");
|
|
AddAttr<float>("scale",
|
|
"(float) the default value is 1.0507~. For more "
|
|
"information about this value, please refer to:"
|
|
"https://arxiv.org/abs/1706.02515.")
|
|
.SetDefault(1.0507009873554804934193349852946);
|
|
AddAttr<float>("alpha",
|
|
"(float) the default value is 1.6732~. For more "
|
|
"information about this value, please refer to:"
|
|
"https://arxiv.org/abs/1706.02515.")
|
|
.SetDefault(1.6732632423543772848170429916717);
|
|
AddComment(R"DOC(
|
|
Selu Operator.
|
|
|
|
The equation is:
|
|
$$
|
|
f(x) =\lambda*
|
|
\begin{cases}
|
|
\quad \quad x, \quad \quad \quad \text{if} \ x > 0 \\
|
|
\alpha * e^x - \alpha, \qquad \text{if} \ x <= 0
|
|
\end{cases}
|
|
$$
|
|
|
|
The input `X` can carry the LoD (Level of Details) information,
|
|
or not. And the output shares the LoD information with input `X`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SeluGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *grad_op = new framework::OpDesc();
|
|
grad_op->SetType("selu_grad");
|
|
grad_op->SetInput("Out", Output("Out"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
grad_op->SetAttrMap(this->Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
class SeluGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("Out"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::GetDataTypeOfVar(ctx.InputVar("Out")), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(selu, ops::SeluOp, ops::SeluOpMaker, ops::SeluOpInferVarType,
|
|
ops::SeluGradMaker);
|
|
REGISTER_OPERATOR(selu_grad, ops::SeluGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
selu, ops::SeluKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SeluKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
selu_grad, ops::SeluGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SeluGradKernel<paddle::platform::CPUDeviceContext, double>);
|