You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
9.2 KiB
256 lines
9.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/sum_op.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/var_type_inference.h"
|
|
#include "paddle/fluid/operators/detail/safe_ref.h"
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SumOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SumOp should not be null.");
|
|
if (ctx->IsRuntime() &&
|
|
ctx->GetOutputsVarType("Out")[0] ==
|
|
framework::proto::VarType::LOD_TENSOR_ARRAY) {
|
|
return; // skip runtime infershape when is tensor array;
|
|
}
|
|
|
|
auto x_var_types = ctx->GetInputsVarType("X");
|
|
auto x_dims = ctx->GetInputsDim("X");
|
|
|
|
size_t N = x_dims.size();
|
|
PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0.");
|
|
if (N == 1) {
|
|
VLOG(3) << "Warning: sum have only one input, may waste memory";
|
|
}
|
|
|
|
framework::DDim in_dim({0});
|
|
for (size_t i = 0; i < x_dims.size(); ++i) {
|
|
auto& x_dim = x_dims[i];
|
|
// x_dim.size() == 1 means the real dim of selected rows is [0]
|
|
if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS &&
|
|
x_dim.size() == 1) {
|
|
continue;
|
|
}
|
|
if (framework::product(x_dim) == 0) {
|
|
continue;
|
|
}
|
|
if (framework::product(in_dim) == 0) {
|
|
in_dim = x_dim;
|
|
} else {
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(in_dim, x_dim,
|
|
"Input tensors must have same shape");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(in_dim.size(), x_dim.size(),
|
|
"Input tensors must have same shape size");
|
|
// if in_dim or x_dim has -1, not check equal
|
|
for (int i = 0; i < x_dim.size(); ++i) {
|
|
if (x_dim[i] == -1 || in_dim[i] == -1) {
|
|
continue;
|
|
}
|
|
PADDLE_ENFORCE_EQ(in_dim[i], x_dim[i],
|
|
"Input tensors must have same shape if not -1");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", in_dim);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto x_vars = ctx.MultiInputVar("X");
|
|
auto x_vars_name = ctx.Inputs("X");
|
|
|
|
framework::LibraryType library{framework::LibraryType::kPlain};
|
|
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
}
|
|
#endif
|
|
|
|
if (x_vars[0]->IsType<framework::LoDTensor>()) {
|
|
int dtype = -1;
|
|
for (size_t idx = 0; idx < x_vars.size(); ++idx) {
|
|
PADDLE_ENFORCE(x_vars[idx] != nullptr,
|
|
"Input var[%s] should not be nullptr", x_vars_name[idx]);
|
|
auto tensor =
|
|
framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
|
|
if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
|
|
continue;
|
|
}
|
|
if (dtype == -1) {
|
|
dtype = tensor->type();
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(dtype, tensor->type());
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_NE(dtype, -1,
|
|
"Sum operator should have at least one tensor");
|
|
|
|
return framework::OpKernelType(
|
|
static_cast<framework::proto::VarType::Type>(dtype), ctx.GetPlace(),
|
|
layout, library);
|
|
} else if (x_vars[0]->IsType<framework::SelectedRows>()) {
|
|
for (auto& var : x_vars) {
|
|
auto& value = var->Get<framework::SelectedRows>().value();
|
|
if (value.IsInitialized()) {
|
|
return framework::OpKernelType(value.type(), ctx.device_context(),
|
|
layout, library);
|
|
}
|
|
}
|
|
// if input sparse vars are not initialized, use an default kernel type.
|
|
return framework::OpKernelType(framework::proto::VarType::FP32,
|
|
ctx.device_context(), layout, library);
|
|
} else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
|
|
for (auto& x_var : x_vars) {
|
|
auto& array = x_var->Get<framework::LoDTensorArray>();
|
|
for (auto& each : array) {
|
|
if (each.numel() != 0 && each.IsInitialized()) {
|
|
return framework::OpKernelType(each.type(), ctx.device_context(),
|
|
layout, library);
|
|
}
|
|
}
|
|
}
|
|
PADDLE_THROW("Cannot find the input data type by all input data");
|
|
}
|
|
PADDLE_THROW("Unexpected branch. Input type is %s",
|
|
framework::ToTypeName(x_vars[0]->Type()));
|
|
}
|
|
};
|
|
|
|
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
|
|
.AsDuplicable();
|
|
AddOutput("Out", "(Tensor) The output tensor of sum operator.");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Sum operator.
|
|
|
|
This operators sums the input tensors. All the inputs can carry the
|
|
LoD (Level of Details) information. However, the output only shares
|
|
the LoD information with the first input.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SumOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext* ctx) const override {
|
|
auto& inputs = ctx->Input("X");
|
|
auto var_type = framework::proto::VarType::SELECTED_ROWS;
|
|
for (auto& name : ctx->Input("X")) {
|
|
VLOG(10) << name << " " << ctx->GetType(name);
|
|
}
|
|
|
|
bool any_input_is_lod_tensor = std::any_of(
|
|
inputs.begin(), inputs.end(), [ctx](const std::string& name) {
|
|
return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR;
|
|
});
|
|
|
|
auto is_tensor_array = [ctx](const std::string& name) {
|
|
return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY;
|
|
};
|
|
|
|
bool any_input_is_tensor_array =
|
|
std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
|
|
bool all_inputs_are_tensor_array =
|
|
std::all_of(inputs.begin(), inputs.end(), is_tensor_array);
|
|
|
|
if (any_input_is_tensor_array) {
|
|
if (!all_inputs_are_tensor_array) {
|
|
std::ostringstream os;
|
|
for (auto& each : inputs) {
|
|
os << " " << each << " type is " << ctx->GetType(each) << "\n";
|
|
}
|
|
PADDLE_ENFORCE(all_inputs_are_tensor_array,
|
|
"Not all inputs are tensor array:\n%s", os.str());
|
|
}
|
|
var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
|
|
} else if (any_input_is_lod_tensor) {
|
|
var_type = framework::proto::VarType::LOD_TENSOR;
|
|
}
|
|
|
|
auto out_var_name = ctx->Output("Out").front();
|
|
ctx->SetType(out_var_name, var_type);
|
|
ctx->SetDataType(out_var_name, ctx->GetDataType(inputs.front()));
|
|
}
|
|
};
|
|
|
|
class SumGradMaker : public framework::GradOpDescMakerBase {
|
|
public:
|
|
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
|
|
auto x_grads = InputGrad("X", false);
|
|
std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
|
|
grad_ops.reserve(x_grads.size());
|
|
auto og = OutputGrad("Out");
|
|
std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
|
|
[&og](const std::string& x_grad) {
|
|
auto* grad_op = new framework::OpDesc();
|
|
grad_op->SetType("scale");
|
|
grad_op->SetInput("X", og);
|
|
grad_op->SetOutput("Out", {x_grad});
|
|
grad_op->SetAttr("scale", 1.0f);
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
});
|
|
return grad_ops;
|
|
}
|
|
};
|
|
|
|
DECLARE_INPLACE_OP_INFERER(SumInplace, {"X", "Out"});
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
|
|
ops::SumOpVarTypeInference, ops::SumInplace);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);
|