You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.3 KiB
176 lines
5.3 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <memory>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
#ifdef __NVCC__
|
|
#include <thrust/device_vector.h>
|
|
#include "paddle/fluid/framework/array.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename VecXType, typename T>
|
|
struct StackFunctor {
|
|
HOSTDEVICE StackFunctor(const VecXType &x, T *y, int n, int post)
|
|
: x_(x), y_(y), n_(n), post_(post) {}
|
|
|
|
HOSTDEVICE void operator()(int idx) {
|
|
int i = idx / (n_ * post_);
|
|
int which_x = idx / post_ - i * n_;
|
|
int x_index = i * post_ + idx % post_;
|
|
y_[idx] = x_[which_x][x_index];
|
|
}
|
|
|
|
private:
|
|
VecXType x_;
|
|
T *y_;
|
|
int n_;
|
|
int post_;
|
|
};
|
|
|
|
template <typename VecDxType, typename T>
|
|
struct StackGradFunctor {
|
|
HOSTDEVICE StackGradFunctor(const VecDxType &dx, const T *dy, int n, int post)
|
|
: dx_(dx), dy_(dy), n_(n), post_(post) {}
|
|
|
|
HOSTDEVICE void operator()(int idx) {
|
|
int i = idx / (n_ * post_);
|
|
int which_x = idx / post_ - i * n_;
|
|
int x_index = i * post_ + idx % post_;
|
|
dx_[which_x][x_index] = dy_[idx];
|
|
}
|
|
|
|
private:
|
|
VecDxType dx_;
|
|
const T *dy_;
|
|
int n_;
|
|
int post_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename VecXType, typename T>
|
|
static inline void StackFunctorForRange(const DeviceContext &ctx,
|
|
const VecXType &x, T *y, int total_num,
|
|
int n, int post) {
|
|
platform::ForRange<DeviceContext> for_range(ctx, total_num);
|
|
for_range(StackFunctor<VecXType, T>(x, y, n, post));
|
|
}
|
|
|
|
template <typename DeviceContext, typename VecDxType, typename T>
|
|
static inline void StackGradFunctorForRange(const DeviceContext &ctx,
|
|
const VecDxType &dx, const T *dy,
|
|
int total_num, int n, int post) {
|
|
platform::ForRange<DeviceContext> for_range(ctx, total_num);
|
|
for_range(StackGradFunctor<VecDxType, T>(dx, dy, n, post));
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class UnStackGradKernel : public framework::OpKernel<T> {
|
|
using Tensor = framework::LoDTensor;
|
|
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto x = ctx.MultiInput<Tensor>(framework::GradVarName("Y"));
|
|
auto *y = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
if (axis < 0) axis += (x[0]->dims().size() + 1);
|
|
|
|
int n = static_cast<int>(x.size());
|
|
auto *y_data = y->mutable_data<T>(ctx.GetPlace());
|
|
std::vector<const T *> x_datas(n);
|
|
for (int i = 0; i < n; i++) x_datas[i] = x[i]->data<T>();
|
|
|
|
int pre = 1;
|
|
int post = 1;
|
|
auto &dim = x[0]->dims();
|
|
for (auto i = 0; i < axis; ++i) pre *= dim[i];
|
|
for (auto i = axis; i < dim.size(); ++i) post *= dim[i];
|
|
|
|
#ifdef __NVCC__
|
|
int total_num = pre * n * post;
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
thrust::device_vector<const T *> device_x_vec(x_datas);
|
|
auto x_data_arr = device_x_vec.data().get();
|
|
|
|
StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post);
|
|
|
|
// Wait() must be called because device_x_vec may be destructed before
|
|
// kernel ends
|
|
dev_ctx.Wait();
|
|
#else
|
|
auto x_data_arr = x_datas.data();
|
|
|
|
size_t x_offset = 0;
|
|
size_t y_offset = 0;
|
|
for (int i = 0; i < pre; i++) {
|
|
for (int j = 0; j < n; j++) {
|
|
std::memcpy(y_data + y_offset, x_data_arr[j] + x_offset,
|
|
post * sizeof(T));
|
|
y_offset += post;
|
|
}
|
|
x_offset += post;
|
|
}
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class UnStackKernel : public framework::OpKernel<T> {
|
|
using Tensor = framework::LoDTensor;
|
|
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *dy = ctx.Input<Tensor>("X");
|
|
auto dx = ctx.MultiOutput<Tensor>("Y");
|
|
int axis = ctx.Attr<int>("axis");
|
|
if (axis < 0) axis += dy->dims().size();
|
|
|
|
int n = dy->dims()[axis];
|
|
std::vector<T *> dx_datas(n); // NOLINT
|
|
for (int i = 0; i < n; i++) {
|
|
dx_datas[i] = dx[i]->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
auto dy_data = dy->data<T>();
|
|
|
|
int pre = 1;
|
|
for (int i = 0; i < axis; ++i) pre *= dy->dims()[i];
|
|
int total_num = dy->numel();
|
|
int post = total_num / (n * pre);
|
|
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
#ifdef __NVCC__
|
|
thrust::device_vector<T *> device_dx_vec(dx_datas);
|
|
auto dx_data_arr = device_dx_vec.data().get();
|
|
#else
|
|
auto dx_data_arr = dx_datas.data();
|
|
#endif
|
|
StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n, post);
|
|
#ifdef __NVCC__
|
|
// Wait() must be called because device_dx_vec may be destructed before
|
|
// kernel ends
|
|
dev_ctx.Wait();
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|