You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
481 lines
17 KiB
481 lines
17 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import pickle
|
|
import unittest
|
|
import numpy as np
|
|
|
|
from paddle.static import InputSpec
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.dygraph import Linear
|
|
from paddle.fluid.dygraph import declarative, ProgramTranslator
|
|
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME
|
|
|
|
BATCH_SIZE = 32
|
|
BATCH_NUM = 10
|
|
SEED = 10
|
|
|
|
|
|
def random_batch_reader(input_size, label_size):
|
|
def _get_random_inputs_and_labels(input_size, label_size):
|
|
np.random.seed(SEED)
|
|
input = np.random.random(size=input_size).astype('float32')
|
|
label = np.random.random(size=label_size).astype('int64')
|
|
return input, label
|
|
|
|
def __reader__():
|
|
for _ in range(BATCH_NUM):
|
|
batch_input, batch_label = _get_random_inputs_and_labels(
|
|
[BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
|
|
yield batch_input, batch_label
|
|
|
|
return __reader__
|
|
|
|
|
|
class LinearNet(fluid.dygraph.Layer):
|
|
def __init__(self, in_size, out_size):
|
|
super(LinearNet, self).__init__()
|
|
self._linear = Linear(in_size, out_size)
|
|
|
|
@declarative
|
|
def forward(self, x):
|
|
return self._linear(x)
|
|
|
|
|
|
class LinearNetNotDeclarative(fluid.dygraph.Layer):
|
|
def __init__(self, in_size, out_size):
|
|
super(LinearNetNotDeclarative, self).__init__()
|
|
self._linear = Linear(in_size, out_size)
|
|
|
|
def forward(self, x):
|
|
return self._linear(x)
|
|
|
|
|
|
class LinearNetReturnLoss(fluid.dygraph.Layer):
|
|
def __init__(self, in_size, out_size):
|
|
super(LinearNetReturnLoss, self).__init__()
|
|
self._linear = Linear(in_size, out_size)
|
|
|
|
@declarative
|
|
def forward(self, x):
|
|
y = self._linear(x)
|
|
z = self._linear(y)
|
|
loss = fluid.layers.mean(z)
|
|
return z, loss
|
|
|
|
|
|
def train(layer, input_size=784, label_size=1):
|
|
# create optimizer
|
|
adam = fluid.optimizer.SGDOptimizer(
|
|
learning_rate=0.01, parameter_list=layer.parameters())
|
|
# create data loader
|
|
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
|
|
train_loader.set_batch_generator(
|
|
random_batch_reader(input_size, label_size))
|
|
# train
|
|
for data in train_loader():
|
|
img, label = data
|
|
label.stop_gradient = True
|
|
|
|
cost = layer(img)
|
|
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
|
|
avg_loss.backward()
|
|
adam.minimize(avg_loss)
|
|
layer.clear_gradients()
|
|
return [img], layer, avg_loss
|
|
|
|
|
|
class TestJitSaveLoad(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_path = "model.test_jit_save_load"
|
|
# enable dygraph mode
|
|
fluid.enable_dygraph()
|
|
# config seed
|
|
fluid.default_main_program().random_seed = SEED
|
|
|
|
def train_and_save_model(self, model_path=None, configs=None):
|
|
layer = LinearNet(784, 1)
|
|
example_inputs, layer, _ = train(layer)
|
|
final_model_path = model_path if model_path else self.model_path
|
|
orig_input_types = [type(x) for x in example_inputs]
|
|
fluid.dygraph.jit.save(
|
|
layer=layer,
|
|
model_path=final_model_path,
|
|
input_spec=example_inputs,
|
|
configs=configs)
|
|
new_input_types = [type(x) for x in example_inputs]
|
|
self.assertEqual(orig_input_types, new_input_types)
|
|
return layer
|
|
|
|
def test_save_load(self):
|
|
# train and save model
|
|
train_layer = self.train_and_save_model()
|
|
# load model
|
|
program_translator = ProgramTranslator()
|
|
program_translator.enable(False)
|
|
loaded_layer = fluid.dygraph.jit.load(self.model_path)
|
|
self.load_and_inference(train_layer, loaded_layer)
|
|
self.load_dygraph_state_dict(train_layer)
|
|
self.load_and_finetune(train_layer, loaded_layer)
|
|
program_translator.enable(True)
|
|
|
|
def load_and_inference(self, train_layer, infer_layer):
|
|
train_layer.eval()
|
|
infer_layer.eval()
|
|
# inference & compare
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((1, 784)).astype('float32'))
|
|
self.assertTrue(
|
|
np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))
|
|
|
|
def load_and_finetune(self, train_layer, load_train_layer):
|
|
train_layer.train()
|
|
load_train_layer.train()
|
|
# train & compare
|
|
_, _, train_loss = train(train_layer)
|
|
_, _, load_train_loss = train(load_train_layer)
|
|
self.assertTrue(
|
|
np.array_equal(train_loss.numpy(), load_train_loss.numpy()))
|
|
|
|
def load_dygraph_state_dict(self, train_layer):
|
|
train_layer.eval()
|
|
# construct new model
|
|
new_layer = LinearNet(784, 1)
|
|
model_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
|
|
new_layer.set_dict(model_dict)
|
|
new_layer.eval()
|
|
# inference & compare
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((1, 784)).astype('float32'))
|
|
self.assertTrue(
|
|
np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))
|
|
|
|
def test_save_get_program_failed(self):
|
|
layer = LinearNetNotDeclarative(784, 1)
|
|
example_inputs, layer, _ = train(layer)
|
|
with self.assertRaises(RuntimeError):
|
|
fluid.dygraph.jit.save(
|
|
layer=layer,
|
|
model_path=self.model_path,
|
|
input_spec=example_inputs)
|
|
|
|
def test_load_dygraph_no_path(self):
|
|
model_path = "model.test_jit_save_load.no_path"
|
|
new_layer = LinearNet(784, 1)
|
|
with self.assertRaises(ValueError):
|
|
model_dict, _ = fluid.dygraph.load_dygraph(model_path)
|
|
|
|
def test_load_dygraph_no_var_info(self):
|
|
model_path = "model.test_jit_save_load.no_var_info"
|
|
self.train_and_save_model(model_path=model_path)
|
|
# remove `__variables.info__`
|
|
var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
|
|
os.remove(var_info_path)
|
|
new_layer = LinearNet(784, 1)
|
|
with self.assertRaises(RuntimeError):
|
|
model_dict, _ = fluid.dygraph.load_dygraph(model_path)
|
|
|
|
def test_load_dygraph_not_var_file(self):
|
|
model_path = "model.test_jit_save_load.no_var_file"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.params_filename = "__params__"
|
|
self.train_and_save_model(model_path=model_path, configs=configs)
|
|
new_layer = LinearNet(784, 1)
|
|
with self.assertRaises(RuntimeError):
|
|
model_dict, _ = fluid.dygraph.load_dygraph(model_path)
|
|
|
|
|
|
class LinearNetMultiInput(fluid.dygraph.Layer):
|
|
def __init__(self, in_size, out_size):
|
|
super(LinearNetMultiInput, self).__init__()
|
|
self._linear1 = Linear(in_size, out_size)
|
|
# self._linear2 = Linear(in_size, out_size)
|
|
|
|
@declarative(input_spec=[
|
|
InputSpec(
|
|
[None, 8], dtype='float32'), InputSpec(
|
|
[None, 8], dtype='float32')
|
|
])
|
|
def forward(self, x, y):
|
|
x_out = self._linear1(x)
|
|
y_out = self._linear1(y)
|
|
loss = fluid.layers.mean(x_out + y_out)
|
|
return x_out, y_out, loss
|
|
|
|
|
|
class TestSaveLoadWithInputSpec(unittest.TestCase):
|
|
def setUp(self):
|
|
# enable dygraph mode
|
|
fluid.enable_dygraph()
|
|
|
|
def test_with_input_spec(self):
|
|
net = LinearNetReturnLoss(8, 8)
|
|
# set x.shape = [None, 8]
|
|
net.forward = declarative(
|
|
net.forward, input_spec=[InputSpec(
|
|
[None, 8], name='x')])
|
|
|
|
model_path = "model.input_spec.output_spec"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
# check inputs and outputs
|
|
self.assertTrue(len(net.forward.inputs) == 1)
|
|
input_x = net.forward.inputs[0]
|
|
self.assertTrue(input_x.shape == (-1, 8))
|
|
self.assertTrue(input_x.name == 'x')
|
|
|
|
# 1. prune loss
|
|
configs.output_spec = net.forward.outputs[:1]
|
|
fluid.dygraph.jit.save(net, model_path, configs=configs)
|
|
|
|
# 2. load to infer
|
|
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
pred = infer_layer(x)
|
|
|
|
def test_multi_in_out(self):
|
|
net = LinearNetMultiInput(8, 8)
|
|
|
|
model_path = "model.multi_inout.output_spec1"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
# 1. check inputs and outputs
|
|
self.assertTrue(len(net.forward.inputs) == 2)
|
|
input_x = net.forward.inputs[0]
|
|
input_y = net.forward.inputs[1]
|
|
self.assertTrue(input_x.shape == (-1, 8))
|
|
self.assertTrue(input_y.shape == (-1, 8))
|
|
|
|
# 2. prune loss
|
|
configs.output_spec = net.forward.outputs[:2]
|
|
fluid.dygraph.jit.save(net, model_path, configs=configs)
|
|
|
|
# 3. load to infer
|
|
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
y = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
# 4. predict
|
|
pred_x, pred_y = infer_layer(x, y)
|
|
|
|
# 1. prune y and loss
|
|
model_path = "model.multi_inout.output_spec2"
|
|
configs.output_spec = net.forward.outputs[:1]
|
|
fluid.dygraph.jit.save(net, model_path, [input_x], configs)
|
|
# 2. load again
|
|
infer_layer2 = fluid.dygraph.jit.load(model_path, configs=configs)
|
|
# 3. predict
|
|
pred_xx = infer_layer2(x)
|
|
|
|
# 4. assert pred_x == pred_xx
|
|
self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
|
|
|
|
|
|
class TestJitSaveLoadConfig(unittest.TestCase):
|
|
def setUp(self):
|
|
# enable dygraph mode
|
|
fluid.enable_dygraph()
|
|
# config seed
|
|
fluid.default_main_program().random_seed = SEED
|
|
|
|
def basic_save_load(self, layer, model_path, configs):
|
|
# 1. train & save
|
|
example_inputs, train_layer, _ = train(layer)
|
|
fluid.dygraph.jit.save(
|
|
layer=train_layer,
|
|
model_path=model_path,
|
|
input_spec=example_inputs,
|
|
configs=configs)
|
|
# 2. load
|
|
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
|
|
train_layer.eval()
|
|
# 3. inference & compare
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((1, 784)).astype('float32'))
|
|
self.assertTrue(
|
|
np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))
|
|
|
|
def test_model_filename(self):
|
|
layer = LinearNet(784, 1)
|
|
model_path = "model.save_load_config.output_spec"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.model_filename = "__simplenet__"
|
|
self.basic_save_load(layer, model_path, configs)
|
|
|
|
def test_params_filename(self):
|
|
layer = LinearNet(784, 1)
|
|
model_path = "model.save_load_config.params_filename"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.params_filename = "__params__"
|
|
self.basic_save_load(layer, model_path, configs)
|
|
|
|
def test_separate_params(self):
|
|
layer = LinearNet(784, 1)
|
|
model_path = "model.save_load_config.separate_params"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.separate_params = True
|
|
self.basic_save_load(layer, model_path, configs)
|
|
|
|
def test_output_spec(self):
|
|
train_layer = LinearNetReturnLoss(8, 8)
|
|
adam = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=0.1, parameter_list=train_layer.parameters())
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
for i in range(10):
|
|
out, loss = train_layer(x)
|
|
loss.backward()
|
|
adam.minimize(loss)
|
|
train_layer.clear_gradients()
|
|
|
|
model_path = "model.save_load_config.output_spec"
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.output_spec = [out]
|
|
fluid.dygraph.jit.save(
|
|
layer=train_layer,
|
|
model_path=model_path,
|
|
input_spec=[x],
|
|
configs=configs)
|
|
|
|
train_layer.eval()
|
|
infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
self.assertTrue(
|
|
np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))
|
|
|
|
|
|
class MultiLoadingLinearNet(fluid.dygraph.Layer):
|
|
def __init__(self, size, model_path):
|
|
super(MultiLoadingLinearNet, self).__init__()
|
|
self._linear = Linear(size, size)
|
|
self._load_linear1 = fluid.dygraph.jit.load(model_path)
|
|
self._load_linear2 = fluid.dygraph.jit.load(model_path)
|
|
|
|
@declarative
|
|
def forward(self, x):
|
|
tmp1 = self._linear(x)
|
|
tmp2 = self._load_linear1(tmp1)
|
|
tmp3 = self._load_linear2(tmp2)
|
|
y = self._linear(tmp3)
|
|
return y
|
|
|
|
|
|
class TestJitMultipleLoading(unittest.TestCase):
|
|
def setUp(self):
|
|
self.linear_size = 4
|
|
self.model_path = "model.jit_multi_load"
|
|
# enable dygraph mode
|
|
fluid.enable_dygraph()
|
|
# config seed
|
|
fluid.default_main_program().random_seed = SEED
|
|
# train and save base model
|
|
self.train_and_save_orig_model()
|
|
|
|
def train_and_save_orig_model(self):
|
|
layer = LinearNet(self.linear_size, self.linear_size)
|
|
example_inputs, layer, _ = train(layer, self.linear_size, 1)
|
|
fluid.dygraph.jit.save(
|
|
layer=layer, model_path=self.model_path, input_spec=example_inputs)
|
|
|
|
def test_load_model_retransform_inference(self):
|
|
multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
|
|
self.model_path)
|
|
state_dict = multi_loaded_layer.state_dict()
|
|
name_set = set()
|
|
for _, var in state_dict.items():
|
|
self.assertTrue(var.name not in name_set)
|
|
name_set.add(var.name)
|
|
|
|
|
|
class LinearNetReturnHidden(fluid.dygraph.Layer):
|
|
def __init__(self, in_size, out_size):
|
|
super(LinearNetReturnHidden, self).__init__()
|
|
self._linear_1 = Linear(in_size, out_size)
|
|
self._linear_2 = Linear(in_size, out_size)
|
|
|
|
@declarative
|
|
def forward(self, x):
|
|
y = self._linear_1(x)
|
|
z = self._linear_2(y)
|
|
loss = fluid.layers.mean(z)
|
|
return y, loss
|
|
|
|
|
|
class TestJitPruneModelAndLoad(unittest.TestCase):
|
|
def setUp(self):
|
|
self.linear_size = 4
|
|
self.model_path = "model.jit_prune_model_and_load"
|
|
# enable dygraph mode
|
|
fluid.enable_dygraph()
|
|
# config seed
|
|
fluid.default_main_program().random_seed = SEED
|
|
|
|
def train_and_save(self):
|
|
train_layer = LinearNetReturnHidden(8, 8)
|
|
adam = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=0.1, parameter_list=train_layer.parameters())
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
for i in range(10):
|
|
hidden, loss = train_layer(x)
|
|
loss.backward()
|
|
adam.minimize(loss)
|
|
train_layer.clear_gradients()
|
|
|
|
configs = fluid.dygraph.jit.SaveLoadConfig()
|
|
configs.output_spec = [hidden]
|
|
fluid.dygraph.jit.save(
|
|
layer=train_layer,
|
|
model_path=self.model_path,
|
|
input_spec=[x],
|
|
configs=configs)
|
|
|
|
return train_layer
|
|
|
|
def test_load_pruned_model(self):
|
|
train_layer = self.train_and_save()
|
|
train_layer.eval()
|
|
|
|
infer_layer = fluid.dygraph.jit.load(self.model_path)
|
|
|
|
x = fluid.dygraph.to_variable(
|
|
np.random.random((4, 8)).astype('float32'))
|
|
self.assertTrue(
|
|
np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))
|
|
|
|
def test_load_var_not_in_extra_var_info(self):
|
|
self.train_and_save()
|
|
|
|
# chage extra var info
|
|
var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME)
|
|
with open(var_info_path, 'rb') as f:
|
|
extra_var_info = pickle.load(f)
|
|
extra_var_info.clear()
|
|
with open(var_info_path, 'wb') as f:
|
|
pickle.dump(extra_var_info, f, protocol=2)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
fluid.dygraph.jit.load(self.model_path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|