You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.8 KiB
137 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/executor.h"
|
|
|
|
#include <set>
|
|
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/framework/feed_fetch_type.h"
|
|
#include "paddle/framework/lod_rank_table.h"
|
|
#include "paddle/framework/lod_tensor_array.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/platform/place.h"
|
|
|
|
DEFINE_bool(check_nan_inf, false,
|
|
"Checking whether operator produce NAN/INF or not. It will be "
|
|
"extremely slow so please use this flag wisely.");
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
const std::string kFeedOpType = "feed";
|
|
const std::string kFetchOpType = "fetch";
|
|
|
|
Executor::Executor(const platform::Place& place) : place_(place) {}
|
|
|
|
static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) {
|
|
if (var_type == proto::VarDesc::LOD_TENSOR) {
|
|
var->GetMutable<LoDTensor>();
|
|
} else if (var_type == proto::VarDesc::SELECTED_ROWS) {
|
|
var->GetMutable<SelectedRows>();
|
|
} else if (var_type == proto::VarDesc::FEED_MINIBATCH) {
|
|
var->GetMutable<FeedFetchList>();
|
|
} else if (var_type == proto::VarDesc::FETCH_LIST) {
|
|
var->GetMutable<FeedFetchList>();
|
|
} else if (var_type == proto::VarDesc::STEP_SCOPES) {
|
|
var->GetMutable<std::vector<framework::Scope>>();
|
|
} else if (var_type == proto::VarDesc::LOD_RANK_TABLE) {
|
|
var->GetMutable<LoDRankTable>();
|
|
} else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) {
|
|
var->GetMutable<LoDTensorArray>();
|
|
} else if (var_type == proto::VarDesc::PLACE_LIST) {
|
|
var->GetMutable<platform::PlaceList>();
|
|
} else {
|
|
PADDLE_THROW(
|
|
"Variable type %d is not in "
|
|
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE,"
|
|
" PLACE_LIST]",
|
|
var_type);
|
|
}
|
|
}
|
|
|
|
static void CheckTensorNANOrInf(const std::string& name,
|
|
const framework::Tensor& tensor) {
|
|
if (tensor.memory_size() == 0) {
|
|
return;
|
|
}
|
|
if (tensor.type().hash_code() != typeid(float).hash_code() &&
|
|
tensor.type().hash_code() != typeid(double).hash_code()) {
|
|
return;
|
|
}
|
|
PADDLE_ENFORCE(!framework::HasInf(tensor), "Tensor %s has Inf", name);
|
|
PADDLE_ENFORCE(!framework::HasNAN(tensor), "Tensor %s has NAN", name);
|
|
}
|
|
|
|
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
|
|
bool create_local_scope, bool create_vars) {
|
|
// TODO(tonyyang-svail):
|
|
// - only runs on the first device (i.e. no interdevice communication)
|
|
// - will change to use multiple blocks for RNN op and Cond Op
|
|
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size());
|
|
auto& block = pdesc.Block(block_id);
|
|
|
|
Scope* local_scope = scope;
|
|
if (create_vars) {
|
|
if (create_local_scope) {
|
|
local_scope = &scope->NewScope();
|
|
for (auto& var : block.AllVars()) {
|
|
if (var->Name() == framework::kEmptyVarName) {
|
|
continue;
|
|
}
|
|
|
|
if (var->Persistable()) {
|
|
auto* ptr = scope->Var(var->Name());
|
|
CreateTensor(ptr, var->GetType());
|
|
VLOG(3) << "Create Variable " << var->Name()
|
|
<< " global, which pointer is " << ptr;
|
|
} else {
|
|
auto* ptr = local_scope->Var(var->Name());
|
|
CreateTensor(ptr, var->GetType());
|
|
VLOG(3) << "Create Variable " << var->Name()
|
|
<< " locally, which pointer is " << ptr;
|
|
}
|
|
}
|
|
} else {
|
|
for (auto& var : block.AllVars()) {
|
|
auto* ptr = local_scope->Var(var->Name());
|
|
CreateTensor(ptr, var->GetType());
|
|
VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
|
|
<< ptr;
|
|
}
|
|
} // if (create_local_scope)
|
|
} // if (create_vars)
|
|
|
|
for (auto& op_desc : block.AllOps()) {
|
|
auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
|
|
VLOG(3) << op->DebugStringEx(local_scope);
|
|
op->Run(*local_scope, place_);
|
|
if (FLAGS_check_nan_inf) {
|
|
for (auto& vname : op->OutputVars(true)) {
|
|
auto* var = local_scope->FindVar(vname);
|
|
if (var == nullptr) continue;
|
|
if (var->IsType<framework::LoDTensor>()) {
|
|
CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (create_vars && create_local_scope) {
|
|
scope->DeleteScope(local_scope);
|
|
}
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|