You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.3 KiB
128 lines
4.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "LayerGradUtil.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
|
|
using namespace paddle; // NOLINT
|
|
using namespace std; // NOLINT
|
|
|
|
// Do one forward pass of expand layer and check to see if its output
|
|
// matches the given result.(Test onlyCPU currently.)
|
|
void doOneExpandTest(string trans_type,
|
|
bool hasSubseq,
|
|
bool useGpu,
|
|
Argument& input1,
|
|
Argument& input2,
|
|
Argument& result) {
|
|
FLAGS_use_gpu = false;
|
|
// Setting up the expand layer
|
|
TestConfig config;
|
|
config.layerConfig.set_type("expand");
|
|
|
|
auto inputType1 =
|
|
trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA;
|
|
config.inputDefs.push_back({inputType1, "layer0", 1, 0});
|
|
auto inputType2 =
|
|
hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA;
|
|
|
|
config.inputDefs.push_back({inputType2, "layer1", 1, 0});
|
|
config.layerConfig.add_inputs();
|
|
config.layerConfig.add_inputs();
|
|
config.layerConfig.set_trans_type(trans_type);
|
|
|
|
// data layer initialize
|
|
std::vector<DataLayerPtr> dataLayers;
|
|
LayerMap layerMap;
|
|
vector<Argument> datas;
|
|
initDataLayer(
|
|
config, &dataLayers, &datas, &layerMap, "expand", 1, false, useGpu);
|
|
dataLayers[0]->getOutput() = input1;
|
|
dataLayers[1]->getOutput() = input2;
|
|
|
|
// test layer initialize
|
|
std::vector<ParameterPtr> parameters;
|
|
LayerPtr expandLayer;
|
|
initTestLayer(config, &layerMap, ¶meters, &expandLayer);
|
|
expandLayer->forward(PASS_GC);
|
|
checkMatrixEqual(expandLayer->getOutputValue(), result.value);
|
|
}
|
|
|
|
TEST(Layer, ExpandLayerFwd) {
|
|
bool useGpu = false;
|
|
|
|
// Assume batch_size =3 in all cases.
|
|
|
|
// CPU case 1. non-seq expand to seq
|
|
// input1 = 1,2,3
|
|
// input2 = [4,5],[6],[7,8,9]
|
|
// result = [1,1],[2],[3,3,3]
|
|
Argument input1, input2, result;
|
|
input1.value = Matrix::create(3, 1, false, useGpu);
|
|
real input1Data[] = {1, 2, 3};
|
|
input1.value->setData(input1Data);
|
|
|
|
input2.value = Matrix::create(6, 1, false, useGpu);
|
|
real input2Data[] = {4, 5, 6, 7, 8, 9};
|
|
input2.value->setData(input2Data);
|
|
input2.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
|
|
int input2Seq[] = {0, 2, 3, 6};
|
|
input2.sequenceStartPositions->copyFrom(input2Seq, 4, useGpu);
|
|
|
|
result.value = Matrix::create(6, 1, false, useGpu);
|
|
real resultData[] = {1, 1, 2, 3, 3, 3};
|
|
result.value->setData(resultData);
|
|
|
|
doOneExpandTest("non-seq", false, useGpu, input1, input2, result);
|
|
|
|
// CPU case 2. non-seq expand to sub-seq
|
|
// NOTE: input1.batch_size == input2.sequencelength in this case.
|
|
// i.e, input1 expands by input2.sequence
|
|
// input1 = 1,2,3
|
|
// input2 = [[4,5]],[[6]],[[7],[8,9]]
|
|
// result = [[1,1]],[[2]],[[3],[3,3]]
|
|
input2.subSequenceStartPositions = ICpuGpuVector::create(5, useGpu);
|
|
int input2SubSeq[] = {0, 2, 3, 4, 6};
|
|
input2.subSequenceStartPositions->copyFrom(input2SubSeq, 5, useGpu);
|
|
|
|
doOneExpandTest("non-seq", true, useGpu, input1, input2, result);
|
|
|
|
// CPU case 3. seq expand to sub-seq
|
|
// input1 = [1,2],[3],[4]
|
|
// input2 = [[4,5]],[[6]],[[7],[8,9]]
|
|
// result = [[1,1]],[[2]],[[3],[4,4]]
|
|
Matrix::resizeOrCreate(input1.value, 4, 1, false, useGpu);
|
|
real input1Data_case3[] = {1, 2, 3, 4};
|
|
input1.value->setData(input1Data_case3);
|
|
|
|
input1.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
|
|
int input1Seq[] = {0, 2, 3, 4};
|
|
input1.sequenceStartPositions->copyFrom(input1Seq, 4, useGpu);
|
|
|
|
real resultData_case3[] = {1, 1, 2, 3, 4, 4};
|
|
result.value->setData(resultData_case3);
|
|
|
|
doOneExpandTest("seq", true, useGpu, input1, input2, result);
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
testing::InitGoogleTest(&argc, argv);
|
|
initMain(argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|