You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
68 lines
2.8 KiB
68 lines
2.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class AdamaxOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
|
|
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
|
|
auto inf_norm_out_tensor = ctx.Output<framework::Tensor>("InfNormOut");
|
|
|
|
param_out_tensor->mutable_data<T>(ctx.GetPlace());
|
|
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
|
|
inf_norm_out_tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
|
|
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
|
|
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
|
|
|
|
auto param = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("Param"));
|
|
auto grad = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("Grad"));
|
|
auto moment = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("Moment"));
|
|
auto inf_norm = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("InfNorm"));
|
|
auto lr = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("LearningRate"));
|
|
auto beta1_pow = framework::EigenVector<T>::Flatten(
|
|
*ctx.Input<framework::Tensor>("Beta1Pow"));
|
|
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
|
|
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
|
|
auto inf_norm_out =
|
|
framework::EigenVector<T>::Flatten(*inf_norm_out_tensor);
|
|
auto* place = ctx.template device_context<DeviceContext>().eigen_device();
|
|
|
|
moment_out.device(*place) = beta1 * moment + (1 - beta1) * grad;
|
|
inf_norm_out.device(*place) =
|
|
grad.abs().cwiseMax((beta2 * inf_norm) + epsilon);
|
|
auto lr_t = lr / (1 - beta1_pow);
|
|
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
|
|
param_out.device(*place) =
|
|
param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|