You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
7.1 KiB
178 lines
7.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include <numeric>
|
|
|
|
#include "paddle/framework/lod_rank_table.h"
|
|
#include "paddle/framework/lod_tensor_array.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/memory/memcpy.h"
|
|
#include "paddle/platform/device_context.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using LoD = framework::LoD;
|
|
|
|
class ArrayToLoDTensorOp : public framework::OperatorBase {
|
|
public:
|
|
ArrayToLoDTensorOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &dev_place) const override {
|
|
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
|
|
auto &rank_table =
|
|
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
|
|
auto *out =
|
|
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
|
|
|
|
// Check dims, place and data type of input's elements and infer output's
|
|
// dim
|
|
PADDLE_ENFORCE(!x.empty(), "There's no element in the input array.");
|
|
int rank = x[0].dims().size();
|
|
platform::Place place = x[0].place();
|
|
std::type_index data_type = x[0].type();
|
|
framework::DDim ins_dims = framework::slice_ddim(x[0].dims(), 1, rank);
|
|
int64_t batch_size = x[0].dims()[0];
|
|
for (size_t i = 1; i < x.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x[i].dims(), 1, rank), ins_dims,
|
|
"The dimension of the %zu'th element in LoDTensorArray "
|
|
"differs from previous ones.",
|
|
i);
|
|
PADDLE_ENFORCE(platform::places_are_same_class(x[i].place(), place),
|
|
"The place class of the %zu'th element in LoDTensorArray "
|
|
"differs from previous ones.",
|
|
i);
|
|
PADDLE_ENFORCE(x[i].type() == data_type,
|
|
"The date type of the %zu'th element in LoDTensorArray "
|
|
"differs from previous ones.",
|
|
i);
|
|
batch_size += x[i].dims()[0];
|
|
}
|
|
auto ins_dim_vec = framework::vectorize(ins_dims);
|
|
ins_dim_vec.insert(ins_dim_vec.begin(), batch_size);
|
|
framework::DDim out_dims = framework::make_ddim(ins_dim_vec);
|
|
out->Resize(out_dims);
|
|
out->mutable_data(place, data_type);
|
|
|
|
auto &table_items = rank_table.items();
|
|
std::vector<size_t> table_item_idx(table_items.size());
|
|
// table_item_idx = range(table_items_idx.size())
|
|
std::iota(table_item_idx.begin(), table_item_idx.end(), 0);
|
|
std::sort(table_item_idx.begin(), table_item_idx.end(),
|
|
[&](size_t a, size_t b) {
|
|
return table_items[a].index < table_items[b].index;
|
|
});
|
|
|
|
// Build LoDTensor `out`
|
|
framework::LoD *out_lod = out->mutable_lod();
|
|
out_lod->clear();
|
|
size_t out_offset = 0;
|
|
auto prefix_lod = rank_table.coarse_lod();
|
|
prefix_lod.emplace_back();
|
|
auto &cur_level_lod = prefix_lod.back();
|
|
cur_level_lod.push_back(0);
|
|
for (size_t idx : table_item_idx) {
|
|
cur_level_lod.push_back(cur_level_lod.back() + table_items[idx].length);
|
|
for (size_t x_idx = 0; x_idx < table_items[idx].length; ++x_idx) {
|
|
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
|
|
x[x_idx].lod(), idx, idx + 1, 0);
|
|
|
|
auto &lod_length = lod_and_offset.first;
|
|
framework::AppendLoD(out_lod, lod_length);
|
|
|
|
size_t start_offset = lod_and_offset.second.first;
|
|
size_t end_offset = lod_and_offset.second.second;
|
|
VLOG(10) << "idx=" << idx << " x_idx=" << x_idx << " ["
|
|
<< ", " << end_offset << "]";
|
|
// Copy data
|
|
PADDLE_ENFORCE_GE(end_offset, start_offset);
|
|
size_t len = end_offset - start_offset;
|
|
if (len == 0) {
|
|
continue;
|
|
}
|
|
auto slice = out->Slice(out_offset, out_offset + len);
|
|
|
|
platform::DeviceContextPool &pool =
|
|
platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(place);
|
|
|
|
framework::Copy(x[x_idx].Slice(start_offset, end_offset), place,
|
|
dev_ctx, &slice);
|
|
out_offset += len;
|
|
}
|
|
}
|
|
out_lod->insert(out_lod->begin(), prefix_lod.begin(), prefix_lod.end());
|
|
}
|
|
};
|
|
|
|
class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ArrayToLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(std::vector<LodTensor>) A vector of tensors that is going to "
|
|
"be casted to a big LoDTensor.");
|
|
AddInput("RankTable",
|
|
"(LoDRankTable) RankTable provides the coarse lod infomation to "
|
|
"build the output LoDTensor. See "
|
|
"'paddle/framework/lod_rank_table.h' for more details.");
|
|
AddOutput("Out", "(LoDTensor) The LoDTensor formed by input tensor array.");
|
|
AddComment(
|
|
R"DOC(This Op build a big LoDTensor from a std::vector<LoDTensor>
|
|
and a LoDRankTable. It is supposed to be used in getting dynamic RNN's
|
|
outputs back to a normal LoDTensor. The std::vector<LoDTensor>
|
|
would be the output of RNN Op and the LoDRankTable would be build
|
|
with RNN's input.)DOC");
|
|
}
|
|
};
|
|
|
|
class ArrayToLoDTensorInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("X"),
|
|
"ArrayToLoDTensorOp must has input X.");
|
|
PADDLE_ENFORCE(context->HasInput("RankTable"),
|
|
"ArrayToLoDTensorOp must has input RankTable.");
|
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
class ArrayToLoDTensorGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *grad_op = new framework::OpDesc();
|
|
grad_op->SetType("lod_tensor_to_array");
|
|
grad_op->SetInput("X", OutputGrad("Out"));
|
|
grad_op->SetInput("RankTable", Input("RankTable"));
|
|
grad_op->SetOutput("Out", InputGrad("X"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(array_to_lod_tensor, ops::ArrayToLoDTensorOp,
|
|
ops::ArrayToLoDTensorOpProtoMaker,
|
|
ops::ArrayToLoDTensorInferShape,
|
|
ops::ArrayToLoDTensorGradMaker);
|