You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.0 KiB
112 lines
4.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/cross_entropy_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
|
|
const int64_t* label, const int N,
|
|
const int D) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
int idx = i * D + label[i];
|
|
dX[idx] = -dY[i] / X[idx];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
|
|
const T* label, const int N,
|
|
const int D) {
|
|
int ids = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (ids < N * D) {
|
|
int row_ids = ids / D;
|
|
dX[ids] = -label[ids] * dY[row_ids] / X[ids];
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
class CrossEntropyOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"This kernel only runs on GPU device.");
|
|
const Tensor* x = ctx.Input<Tensor>("X");
|
|
const Tensor* label = ctx.Input<Tensor>("Label");
|
|
Tensor* y = ctx.Output<Tensor>("Y");
|
|
y->mutable_data<T>(ctx.GetPlace());
|
|
|
|
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
|
|
ctx.template device_context<platform::CUDADeviceContext>(), y, x, label,
|
|
ctx.Attr<bool>("soft_label"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"This kernel only runs on GPU device.");
|
|
|
|
const Tensor* x = ctx.Input<Tensor>("X");
|
|
const Tensor* label = ctx.Input<Tensor>("Label");
|
|
Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
|
|
const T* dy_data =
|
|
ctx.Input<Tensor>(framework::GradVarName("Y"))->data<T>();
|
|
T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
|
|
const T* x_data = x->data<T>();
|
|
|
|
int64_t batch_size = x->dims()[0];
|
|
int64_t class_num = x->dims()[1];
|
|
|
|
int block = 512;
|
|
int grid = (batch_size * class_num + block - 1) / block;
|
|
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto stream = dev_ctx.stream();
|
|
|
|
if (ctx.Attr<bool>("soft_label")) {
|
|
auto* label_data = label->data<T>();
|
|
SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
|
|
dx_data, dy_data, x_data, label_data, batch_size, class_num);
|
|
} else {
|
|
math::SetConstant<platform::CUDADeviceContext, T> functor;
|
|
functor(dev_ctx, dx, 0);
|
|
auto* label_data = label->data<int64_t>();
|
|
grid = (batch_size + block - 1) / block;
|
|
CrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
|
|
dx_data, dy_data, x_data, label_data, batch_size, class_num);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>,
|
|
ops::CrossEntropyOpCUDAKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(cross_entropy_grad,
|
|
ops::CrossEntropyGradientOpCUDAKernel<float>,
|
|
ops::CrossEntropyGradientOpCUDAKernel<double>);
|